Cargando…
Validating the pivotal role of the immune system in low‐dose radiation‐induced tumor inhibition in Lewis lung cancer‐bearing mice
Although low‐dose radiation (LDR) possesses the two distinct functions of inducing hormesis and adaptive responses, which result in immune enhancement and tumor inhibition, its clinical applications have not yet been elucidated. The major obstacle that hinders the application of LDR in the clinical...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5911597/ https://www.ncbi.nlm.nih.gov/pubmed/29479834 http://dx.doi.org/10.1002/cam4.1344 |
_version_ | 1783316238674427904 |
---|---|
author | Zhou, Lei Zhang, Xiaoying Li, Hui Niu, Chao Yu, Dehai Yang, Guozi Liang, Xinyue Wen, Xue Li, Min Cui, Jiuwei |
author_facet | Zhou, Lei Zhang, Xiaoying Li, Hui Niu, Chao Yu, Dehai Yang, Guozi Liang, Xinyue Wen, Xue Li, Min Cui, Jiuwei |
author_sort | Zhou, Lei |
collection | PubMed |
description | Although low‐dose radiation (LDR) possesses the two distinct functions of inducing hormesis and adaptive responses, which result in immune enhancement and tumor inhibition, its clinical applications have not yet been elucidated. The major obstacle that hinders the application of LDR in the clinical setting is that the mechanisms underlying induction of tumor inhibition are unclear, and the risks associated with LDR are still unknown. Thus, to overcome this obstacle and elucidate the mechanisms mediating the antitumor effects of LDR, in this study, we established an in vivo lung cancer model to investigate the participation of the immune system in LDR‐induced tumor inhibition and validated the pivotal role of the immune system by impairing immunity with high‐dose radiation (HDR) of 1 Gy. Additionally, the LDR‐induced adaptive response of the immune system was also observed by sequential HDR treatment in this mouse model. We found that LDR‐activated T cells and natural killer cells and increased the cytotoxicity of splenocytes and the infiltration of T cells in the tumor tissues. In contrast, when immune function was impaired by HDR pretreatment, LDR could not induce tumor inhibition. However, when LDR was administered before HDR, the immunity could be protected from impairment, and tumor growth could be inhibited to some extent, indicating the induction of the immune adaptive response by LDR. Therefore, we demonstrated that immune enhancement played a key role in LDR‐induced tumor inhibition. These findings emphasized the importance of the immune response in tumor radiotherapy and may help promote the application of LDR as a novel approach in clinical practice. |
format | Online Article Text |
id | pubmed-5911597 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-59115972018-04-30 Validating the pivotal role of the immune system in low‐dose radiation‐induced tumor inhibition in Lewis lung cancer‐bearing mice Zhou, Lei Zhang, Xiaoying Li, Hui Niu, Chao Yu, Dehai Yang, Guozi Liang, Xinyue Wen, Xue Li, Min Cui, Jiuwei Cancer Med Cancer Biology Although low‐dose radiation (LDR) possesses the two distinct functions of inducing hormesis and adaptive responses, which result in immune enhancement and tumor inhibition, its clinical applications have not yet been elucidated. The major obstacle that hinders the application of LDR in the clinical setting is that the mechanisms underlying induction of tumor inhibition are unclear, and the risks associated with LDR are still unknown. Thus, to overcome this obstacle and elucidate the mechanisms mediating the antitumor effects of LDR, in this study, we established an in vivo lung cancer model to investigate the participation of the immune system in LDR‐induced tumor inhibition and validated the pivotal role of the immune system by impairing immunity with high‐dose radiation (HDR) of 1 Gy. Additionally, the LDR‐induced adaptive response of the immune system was also observed by sequential HDR treatment in this mouse model. We found that LDR‐activated T cells and natural killer cells and increased the cytotoxicity of splenocytes and the infiltration of T cells in the tumor tissues. In contrast, when immune function was impaired by HDR pretreatment, LDR could not induce tumor inhibition. However, when LDR was administered before HDR, the immunity could be protected from impairment, and tumor growth could be inhibited to some extent, indicating the induction of the immune adaptive response by LDR. Therefore, we demonstrated that immune enhancement played a key role in LDR‐induced tumor inhibition. These findings emphasized the importance of the immune response in tumor radiotherapy and may help promote the application of LDR as a novel approach in clinical practice. John Wiley and Sons Inc. 2018-02-25 /pmc/articles/PMC5911597/ /pubmed/29479834 http://dx.doi.org/10.1002/cam4.1344 Text en © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Cancer Biology Zhou, Lei Zhang, Xiaoying Li, Hui Niu, Chao Yu, Dehai Yang, Guozi Liang, Xinyue Wen, Xue Li, Min Cui, Jiuwei Validating the pivotal role of the immune system in low‐dose radiation‐induced tumor inhibition in Lewis lung cancer‐bearing mice |
title | Validating the pivotal role of the immune system in low‐dose radiation‐induced tumor inhibition in Lewis lung cancer‐bearing mice |
title_full | Validating the pivotal role of the immune system in low‐dose radiation‐induced tumor inhibition in Lewis lung cancer‐bearing mice |
title_fullStr | Validating the pivotal role of the immune system in low‐dose radiation‐induced tumor inhibition in Lewis lung cancer‐bearing mice |
title_full_unstemmed | Validating the pivotal role of the immune system in low‐dose radiation‐induced tumor inhibition in Lewis lung cancer‐bearing mice |
title_short | Validating the pivotal role of the immune system in low‐dose radiation‐induced tumor inhibition in Lewis lung cancer‐bearing mice |
title_sort | validating the pivotal role of the immune system in low‐dose radiation‐induced tumor inhibition in lewis lung cancer‐bearing mice |
topic | Cancer Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5911597/ https://www.ncbi.nlm.nih.gov/pubmed/29479834 http://dx.doi.org/10.1002/cam4.1344 |
work_keys_str_mv | AT zhoulei validatingthepivotalroleoftheimmunesysteminlowdoseradiationinducedtumorinhibitioninlewislungcancerbearingmice AT zhangxiaoying validatingthepivotalroleoftheimmunesysteminlowdoseradiationinducedtumorinhibitioninlewislungcancerbearingmice AT lihui validatingthepivotalroleoftheimmunesysteminlowdoseradiationinducedtumorinhibitioninlewislungcancerbearingmice AT niuchao validatingthepivotalroleoftheimmunesysteminlowdoseradiationinducedtumorinhibitioninlewislungcancerbearingmice AT yudehai validatingthepivotalroleoftheimmunesysteminlowdoseradiationinducedtumorinhibitioninlewislungcancerbearingmice AT yangguozi validatingthepivotalroleoftheimmunesysteminlowdoseradiationinducedtumorinhibitioninlewislungcancerbearingmice AT liangxinyue validatingthepivotalroleoftheimmunesysteminlowdoseradiationinducedtumorinhibitioninlewislungcancerbearingmice AT wenxue validatingthepivotalroleoftheimmunesysteminlowdoseradiationinducedtumorinhibitioninlewislungcancerbearingmice AT limin validatingthepivotalroleoftheimmunesysteminlowdoseradiationinducedtumorinhibitioninlewislungcancerbearingmice AT cuijiuwei validatingthepivotalroleoftheimmunesysteminlowdoseradiationinducedtumorinhibitioninlewislungcancerbearingmice |