Cargando…

Inhibitory Effects of Simvastatin on Oxidized Low-Density Lipoprotein-Induced Endoplasmic Reticulum Stress and Apoptosis in Vascular Endothelial Cells

BACKGROUND: Oxidized low-density lipoprotein (ox-LDL)-induced oxidative stress and endothelial apoptosis are essential for atherosclerosis. Our previous study has shown that ox-LDL-induced apoptosis is mediated by the protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic translation...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Guo-Qiang, Tao, Yong-Kang, Bai, Yong-Ping, Yan, Sheng-Tao, Zhao, Shui-Ping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5912062/
https://www.ncbi.nlm.nih.gov/pubmed/29664056
http://dx.doi.org/10.4103/0366-6999.229891
_version_ 1783316329278734336
author Zhang, Guo-Qiang
Tao, Yong-Kang
Bai, Yong-Ping
Yan, Sheng-Tao
Zhao, Shui-Ping
author_facet Zhang, Guo-Qiang
Tao, Yong-Kang
Bai, Yong-Ping
Yan, Sheng-Tao
Zhao, Shui-Ping
author_sort Zhang, Guo-Qiang
collection PubMed
description BACKGROUND: Oxidized low-density lipoprotein (ox-LDL)-induced oxidative stress and endothelial apoptosis are essential for atherosclerosis. Our previous study has shown that ox-LDL-induced apoptosis is mediated by the protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic translation initiation factor 2α-subunit (eIF2α)/CCAAT/enhancer-binding protein homologous protein (CHOP) endoplasmic reticulum (ER) stress pathway in endothelial cells. Statins are cholesterol-lowering drugs that exert pleiotropic effects including suppression of oxidative stress. This study aimed to explore the roles of simvastatin on ox-LDL-induced ER stress and apoptosis in endothelial cells. METHODS: Human umbilical vein endothelial cells (HUVECs) were treated with simvastatin (0.1, 0.5, or 2.5 μmol/L) or DEVD-CHO (selective inhibitor of caspase-3, 100 μmol/L) for 1 h before the addition of ox-LDL (100 μg/ml) and then incubated for 24 h, and untreated cells were used as a control group. Apoptosis, expression of PERK, phosphorylation of eIF2α, CHOP mRNA level, and caspase-3 activity were measured. Comparisons among multiple groups were performed with one-way analysis of variance (ANOVA) followed by post hoc pairwise comparisons using Tukey's tests. A value of P < 0.05 was considered statistically significant. RESULTS: Exposure of HUVECs to ox-LDL resulted in a significant increase in apoptosis (31.9% vs. 4.9%, P < 0.05). Simvastatin (0.1, 0.5, and 2.5 μmol/L) led to a suppression of ox-LDL-induced apoptosis (28.0%, 24.7%, and 13.8%, F = 15.039, all P < 0.05, compared with control group). Ox-LDL significantly increased the expression of PERK (499.5%, P < 0.05) and phosphorylation of eIF2α (451.6%, P < 0.05), if both of which in the control groups were considered as 100%. Simvastatin treatment (0.1, 0.5, and 2.5 μmol/L) blunted ox-LDL-induced expression of PERK (407.8%, 339.1%, and 187.5%, F = 10.121, all P < 0.05, compared with control group) and phosphorylation of eIF2α (407.8%, 339.1%, 187.5%, F = 11.430, all P < 0.05, compared with control group). In contrast, DEVD-CHO treatment had no significant effect on ox-LDL-induced expression of PERK (486.4%) and phosphorylation of eIF2α (418.8%). Exposure of HUVECs to ox-LDL also markedly induced caspase-3 activity together with increased CHOP mRNA level; these effects were inhibited by simvastatin treatment. CONCLUSIONS: This study suggested that simvastatin could inhibit ox-LDL-induced ER stress and apoptosis in vascular endothelial cells.
format Online
Article
Text
id pubmed-5912062
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Medknow Publications & Media Pvt Ltd
record_format MEDLINE/PubMed
spelling pubmed-59120622018-05-03 Inhibitory Effects of Simvastatin on Oxidized Low-Density Lipoprotein-Induced Endoplasmic Reticulum Stress and Apoptosis in Vascular Endothelial Cells Zhang, Guo-Qiang Tao, Yong-Kang Bai, Yong-Ping Yan, Sheng-Tao Zhao, Shui-Ping Chin Med J (Engl) Original Article BACKGROUND: Oxidized low-density lipoprotein (ox-LDL)-induced oxidative stress and endothelial apoptosis are essential for atherosclerosis. Our previous study has shown that ox-LDL-induced apoptosis is mediated by the protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic translation initiation factor 2α-subunit (eIF2α)/CCAAT/enhancer-binding protein homologous protein (CHOP) endoplasmic reticulum (ER) stress pathway in endothelial cells. Statins are cholesterol-lowering drugs that exert pleiotropic effects including suppression of oxidative stress. This study aimed to explore the roles of simvastatin on ox-LDL-induced ER stress and apoptosis in endothelial cells. METHODS: Human umbilical vein endothelial cells (HUVECs) were treated with simvastatin (0.1, 0.5, or 2.5 μmol/L) or DEVD-CHO (selective inhibitor of caspase-3, 100 μmol/L) for 1 h before the addition of ox-LDL (100 μg/ml) and then incubated for 24 h, and untreated cells were used as a control group. Apoptosis, expression of PERK, phosphorylation of eIF2α, CHOP mRNA level, and caspase-3 activity were measured. Comparisons among multiple groups were performed with one-way analysis of variance (ANOVA) followed by post hoc pairwise comparisons using Tukey's tests. A value of P < 0.05 was considered statistically significant. RESULTS: Exposure of HUVECs to ox-LDL resulted in a significant increase in apoptosis (31.9% vs. 4.9%, P < 0.05). Simvastatin (0.1, 0.5, and 2.5 μmol/L) led to a suppression of ox-LDL-induced apoptosis (28.0%, 24.7%, and 13.8%, F = 15.039, all P < 0.05, compared with control group). Ox-LDL significantly increased the expression of PERK (499.5%, P < 0.05) and phosphorylation of eIF2α (451.6%, P < 0.05), if both of which in the control groups were considered as 100%. Simvastatin treatment (0.1, 0.5, and 2.5 μmol/L) blunted ox-LDL-induced expression of PERK (407.8%, 339.1%, and 187.5%, F = 10.121, all P < 0.05, compared with control group) and phosphorylation of eIF2α (407.8%, 339.1%, 187.5%, F = 11.430, all P < 0.05, compared with control group). In contrast, DEVD-CHO treatment had no significant effect on ox-LDL-induced expression of PERK (486.4%) and phosphorylation of eIF2α (418.8%). Exposure of HUVECs to ox-LDL also markedly induced caspase-3 activity together with increased CHOP mRNA level; these effects were inhibited by simvastatin treatment. CONCLUSIONS: This study suggested that simvastatin could inhibit ox-LDL-induced ER stress and apoptosis in vascular endothelial cells. Medknow Publications & Media Pvt Ltd 2018-04-20 /pmc/articles/PMC5912062/ /pubmed/29664056 http://dx.doi.org/10.4103/0366-6999.229891 Text en Copyright: © 2018 Chinese Medical Journal http://creativecommons.org/licenses/by-nc-sa/4.0 This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.
spellingShingle Original Article
Zhang, Guo-Qiang
Tao, Yong-Kang
Bai, Yong-Ping
Yan, Sheng-Tao
Zhao, Shui-Ping
Inhibitory Effects of Simvastatin on Oxidized Low-Density Lipoprotein-Induced Endoplasmic Reticulum Stress and Apoptosis in Vascular Endothelial Cells
title Inhibitory Effects of Simvastatin on Oxidized Low-Density Lipoprotein-Induced Endoplasmic Reticulum Stress and Apoptosis in Vascular Endothelial Cells
title_full Inhibitory Effects of Simvastatin on Oxidized Low-Density Lipoprotein-Induced Endoplasmic Reticulum Stress and Apoptosis in Vascular Endothelial Cells
title_fullStr Inhibitory Effects of Simvastatin on Oxidized Low-Density Lipoprotein-Induced Endoplasmic Reticulum Stress and Apoptosis in Vascular Endothelial Cells
title_full_unstemmed Inhibitory Effects of Simvastatin on Oxidized Low-Density Lipoprotein-Induced Endoplasmic Reticulum Stress and Apoptosis in Vascular Endothelial Cells
title_short Inhibitory Effects of Simvastatin on Oxidized Low-Density Lipoprotein-Induced Endoplasmic Reticulum Stress and Apoptosis in Vascular Endothelial Cells
title_sort inhibitory effects of simvastatin on oxidized low-density lipoprotein-induced endoplasmic reticulum stress and apoptosis in vascular endothelial cells
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5912062/
https://www.ncbi.nlm.nih.gov/pubmed/29664056
http://dx.doi.org/10.4103/0366-6999.229891
work_keys_str_mv AT zhangguoqiang inhibitoryeffectsofsimvastatinonoxidizedlowdensitylipoproteininducedendoplasmicreticulumstressandapoptosisinvascularendothelialcells
AT taoyongkang inhibitoryeffectsofsimvastatinonoxidizedlowdensitylipoproteininducedendoplasmicreticulumstressandapoptosisinvascularendothelialcells
AT baiyongping inhibitoryeffectsofsimvastatinonoxidizedlowdensitylipoproteininducedendoplasmicreticulumstressandapoptosisinvascularendothelialcells
AT yanshengtao inhibitoryeffectsofsimvastatinonoxidizedlowdensitylipoproteininducedendoplasmicreticulumstressandapoptosisinvascularendothelialcells
AT zhaoshuiping inhibitoryeffectsofsimvastatinonoxidizedlowdensitylipoproteininducedendoplasmicreticulumstressandapoptosisinvascularendothelialcells