Cargando…
In Vivo Imaging of Muscle-tendon Morphogenesis in Drosophila Pupae
Muscles together with tendons and the skeleton enable animals including humans to move their body parts. Muscle morphogenesis is highly conserved from animals to humans. Therefore, the powerful Drosophila model system can be used to study concepts of muscle-tendon development that can also be applie...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MyJove Corporation
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5912364/ https://www.ncbi.nlm.nih.gov/pubmed/29443094 http://dx.doi.org/10.3791/57312 |
_version_ | 1783316367360917504 |
---|---|
author | Lemke, Sandra B. Schnorrer, Frank |
author_facet | Lemke, Sandra B. Schnorrer, Frank |
author_sort | Lemke, Sandra B. |
collection | PubMed |
description | Muscles together with tendons and the skeleton enable animals including humans to move their body parts. Muscle morphogenesis is highly conserved from animals to humans. Therefore, the powerful Drosophila model system can be used to study concepts of muscle-tendon development that can also be applied to human muscle biology. Here, we describe in detail how morphogenesis of the adult muscle-tendon system can be easily imaged in living, developing Drosophila pupae. Hence, the method allows investigating proteins, cells and tissues in their physiological environment. In addition to a step-by-step protocol with helpful tips, we provide a comprehensive overview of fluorescently tagged marker proteins that are suitable for studying the muscle-tendon system. To highlight the versatile applications of the protocol, we show example movies ranging from visualization of long-term morphogenetic events – occurring on the time scale of hours and days – to visualization of short-term dynamic processes like muscle twitching occurring on time scale of seconds. Taken together, this protocol should enable the reader to design and perform live-imaging experiments for investigating muscle-tendon morphogenesis in the intact organism. |
format | Online Article Text |
id | pubmed-5912364 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MyJove Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-59123642018-05-10 In Vivo Imaging of Muscle-tendon Morphogenesis in Drosophila Pupae Lemke, Sandra B. Schnorrer, Frank J Vis Exp Developmental Biology Muscles together with tendons and the skeleton enable animals including humans to move their body parts. Muscle morphogenesis is highly conserved from animals to humans. Therefore, the powerful Drosophila model system can be used to study concepts of muscle-tendon development that can also be applied to human muscle biology. Here, we describe in detail how morphogenesis of the adult muscle-tendon system can be easily imaged in living, developing Drosophila pupae. Hence, the method allows investigating proteins, cells and tissues in their physiological environment. In addition to a step-by-step protocol with helpful tips, we provide a comprehensive overview of fluorescently tagged marker proteins that are suitable for studying the muscle-tendon system. To highlight the versatile applications of the protocol, we show example movies ranging from visualization of long-term morphogenetic events – occurring on the time scale of hours and days – to visualization of short-term dynamic processes like muscle twitching occurring on time scale of seconds. Taken together, this protocol should enable the reader to design and perform live-imaging experiments for investigating muscle-tendon morphogenesis in the intact organism. MyJove Corporation 2018-02-06 /pmc/articles/PMC5912364/ /pubmed/29443094 http://dx.doi.org/10.3791/57312 Text en Copyright © 2018, Journal of Visualized Experiments http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visithttp://creativecommons.org/licenses/by-nc-nd/3.0/ |
spellingShingle | Developmental Biology Lemke, Sandra B. Schnorrer, Frank In Vivo Imaging of Muscle-tendon Morphogenesis in Drosophila Pupae |
title | In Vivo Imaging of Muscle-tendon Morphogenesis in Drosophila Pupae |
title_full | In Vivo Imaging of Muscle-tendon Morphogenesis in Drosophila Pupae |
title_fullStr | In Vivo Imaging of Muscle-tendon Morphogenesis in Drosophila Pupae |
title_full_unstemmed | In Vivo Imaging of Muscle-tendon Morphogenesis in Drosophila Pupae |
title_short | In Vivo Imaging of Muscle-tendon Morphogenesis in Drosophila Pupae |
title_sort | in vivo imaging of muscle-tendon morphogenesis in drosophila pupae |
topic | Developmental Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5912364/ https://www.ncbi.nlm.nih.gov/pubmed/29443094 http://dx.doi.org/10.3791/57312 |
work_keys_str_mv | AT lemkesandrab invivoimagingofmuscletendonmorphogenesisindrosophilapupae AT schnorrerfrank invivoimagingofmuscletendonmorphogenesisindrosophilapupae |