Cargando…

Ovarian mast cells migrate toward ovary-fimbria connection in neonatal MRL/MpJ mice

MRL/MpJ mice have abundant ovarian mast cells (MCs) as compared with other strains at postnatal day 0 (P0); however, they sharply decrease after birth. These ovarian MCs, particularly beneath the ovarian surface epithelium (SE), which express mucosal MC (MMC) marker, might participate in early folli...

Descripción completa

Detalles Bibliográficos
Autores principales: Nakamura, Teppei, Chihara, Masataka, Ichii, Osamu, Otsuka-Kanazawa, Saori, Nagasaki, Ken-ichi, Elewa, Yaser Hosny Ali, Tatsumi, Osamu, Kon, Yasuhiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5912760/
https://www.ncbi.nlm.nih.gov/pubmed/29684078
http://dx.doi.org/10.1371/journal.pone.0196364
Descripción
Sumario:MRL/MpJ mice have abundant ovarian mast cells (MCs) as compared with other strains at postnatal day 0 (P0); however, they sharply decrease after birth. These ovarian MCs, particularly beneath the ovarian surface epithelium (SE), which express mucosal MC (MMC) marker, might participate in early follicular development. This study investigated the changes in spatiotemporal distribution of MCs in the perinatal MRL/MpJ mouse ovaries. At P0 to P7, the MCs were densely localized to the ovary, especially their caudomedial region around the ovary-fimbria connection. The neonatal ovarian MCs showed intermediate characteristics of MMC and connective tissue MC (CTMC), and the latter phenotype became evident with aging. However, the expression ratio of the MMC to CTMC marker increased from P0 to P4 in the MRL/MpJ mouse ovary. Similarly, the ratio of MCs facing SE to total MC number increased with aging, although the number of ovarian MCs decreased, indicating the relative increase in MMC phenotypes in the early neonatal ovary. Neither proliferating nor apoptotic MCs were found in the MRL/MpJ mouse ovaries. The parenchymal cells surrounding MCs at ovary-fimbria connection showed similar molecular expression patterns (E-cadherin(+)/Foxl2(-)/Gata4(+)) as that of the ovarian surface epithelial cells. At P2, around the ovary-fimbria connection, c-kit(-) immature oocytes formed clusters called nests, and some MCs localized adjacent to c-kit(-) oocytes within the nests. These results indicated that in postnatal MRL/MpJ mice, ovarian MCs changed their distribution by migrating toward the parenchymal cells composing ovary-fimbria connection, which possessed similar characteristics to the ovarian surface epithelium. Thus, we elucidated the spatiotemporal alterations of the ovarian MCs in MRL/MpJ mice, and suggested their importance during the early follicular development by migrating toward the ovary-fimbria connection. MRL/MpJ mice would be useful to elucidate the relationship between neonatal immunity and reproductive systems.