Cargando…

High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators

Microresonator frequency combs harness the nonlinear Kerr effect in an integrated optical cavity to generate a multitude of phase-locked frequency lines. The line spacing can reach values in the order of 100 GHz, making it an attractive multi-wavelength light source for applications in fiber-optic c...

Descripción completa

Detalles Bibliográficos
Autores principales: Fülöp, Attila, Mazur, Mikael, Lorences-Riesgo, Abel, Helgason, Óskar B., Wang, Pei-Hsun, Xuan, Yi, Leaird, Dan E., Qi, Minghao, Andrekson, Peter A., Weiner, Andrew M., Torres-Company, Victor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5913129/
https://www.ncbi.nlm.nih.gov/pubmed/29686226
http://dx.doi.org/10.1038/s41467-018-04046-6
Descripción
Sumario:Microresonator frequency combs harness the nonlinear Kerr effect in an integrated optical cavity to generate a multitude of phase-locked frequency lines. The line spacing can reach values in the order of 100 GHz, making it an attractive multi-wavelength light source for applications in fiber-optic communications. Depending on the dispersion of the microresonator, different physical dynamics have been observed. A recently discovered comb state corresponds to the formation of mode-locked dark pulses in a normal-dispersion microcavity. Such dark-pulse combs are particularly compelling for advanced coherent communications since they display unusually high power-conversion efficiency. Here, we report the first coherent-transmission experiments using 64-quadrature amplitude modulation encoded onto the frequency lines of a dark-pulse comb. The high conversion efficiency of the comb enables transmitted optical signal-to-noise ratios above 33 dB, while maintaining a laser pump power level compatible with state-of-the-art hybrid silicon lasers.