Cargando…

KPT-330 inhibition of chromosome region maintenance 1 is cytotoxic and sensitizes chronic myeloid leukemia to Imatinib

As tyrosine kinase inhibitors (e.g., Imatinib, IM) fail to induce long-term response in some chronic myeloid leukemia (CML), novel therapies targeting leukemia-dysregulated pathways are necessary. Nuclear-cytoplasmic trafficking of proteins play a key role in the development of leukemia and drug res...

Descripción completa

Detalles Bibliográficos
Autores principales: Nie, Danian, Huang, Kezhi, Yin, Songmei, Li, Yiqing, Xie, Shuangfeng, Ma, Liping, Wang, Xiuju, Wu, Yudan, Xiao, Jie, Wang, Jieyu, Yang, Wenjuan, Liu, Hongyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5913223/
https://www.ncbi.nlm.nih.gov/pubmed/29707241
http://dx.doi.org/10.1038/s41420-018-0049-2
Descripción
Sumario:As tyrosine kinase inhibitors (e.g., Imatinib, IM) fail to induce long-term response in some chronic myeloid leukemia (CML), novel therapies targeting leukemia-dysregulated pathways are necessary. Nuclear-cytoplasmic trafficking of proteins play a key role in the development of leukemia and drug resistance. KPT-330 (Selinexor), an inhibitor of chromosome region maintenance 1 (CRM1, nuclear receptor exportin 1, XPO1), demonstrated activities against a few hematological malignancies. We examined the anti-leukemic efficacy of KPT-330 in IM-resistant CML. Cell viability was examined by MTS assay. Apoptosis and cell cycle were assessed by flow cytometry. CRM1 mRNA was detected by PCR. Expression of CRM1 protein and its cargo proteins were determined by western blot or immunofluorescent staining. Furthermore, we engrafted nude mice subcutaneously with IM-resistant CML K562G. Mice were treated with IM, KPT-330 alone or in combination. Expression of CRM1 in CML were markedly higher than control. KPT-330 inhibited proliferation, induced cell cycle arrest and apoptosis of K562 and K562G. IC50 of IM on K562G was reduced by KPT-330. Mechanistically, KPT-330 inhibited CRM1 and increased the nuclear/cytoplasm ratio of BCR-ABL and P27. p-AKT was downregulated while p-STAT1 and caspase-3 were upregulated. Furthermore, KPT-330 showed anti-leukemic effect in primary IM-resistant CML with T315I mutation in CRM1-dependent manner. In K562G xenograft mice model, KPT-330 inhibited tumor growth and sensitized K562G to IM in vivo. To conclude, KPT-330 showed anti-leukemic activity and sensitized CML to IM in CRM1-dependent manner in vitro and in vivo. KPT-330 represents an alternative therapy for IM-refractory CML, warranting further investigation of CRM1 as therapeutic target.