Cargando…
Evidence for prevalent Z = 6 magic number in neutron-rich carbon isotopes
The nuclear shell structure, which originates in the nearly independent motion of nucleons in an average potential, provides an important guide for our understanding of nuclear structure and the underlying nuclear forces. Its most remarkable fingerprint is the existence of the so-called magic number...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5913314/ https://www.ncbi.nlm.nih.gov/pubmed/29686394 http://dx.doi.org/10.1038/s41467-018-04024-y |
_version_ | 1783316516398170112 |
---|---|
author | Tran, D. T. Ong, H. J. Hagen, G. Morris, T. D. Aoi, N. Suzuki, T. Kanada-En’yo, Y. Geng, L. S. Terashima, S. Tanihata, I. Nguyen, T. T. Ayyad, Y. Chan, P. Y. Fukuda, M. Geissel, H. Harakeh, M. N. Hashimoto, T. Hoang, T. H. Ideguchi, E. Inoue, A. Jansen, G. R. Kanungo, R. Kawabata, T. Khiem, L. H. Lin, W. P. Matsuta, K. Mihara, M. Momota, S. Nagae, D. Nguyen, N. D. Nishimura, D. Otsuka, T. Ozawa, A. Ren, P. P. Sakaguchi, H. Scheidenberger, C. Tanaka, J. Takechi, M. Wada, R. Yamamoto, T. |
author_facet | Tran, D. T. Ong, H. J. Hagen, G. Morris, T. D. Aoi, N. Suzuki, T. Kanada-En’yo, Y. Geng, L. S. Terashima, S. Tanihata, I. Nguyen, T. T. Ayyad, Y. Chan, P. Y. Fukuda, M. Geissel, H. Harakeh, M. N. Hashimoto, T. Hoang, T. H. Ideguchi, E. Inoue, A. Jansen, G. R. Kanungo, R. Kawabata, T. Khiem, L. H. Lin, W. P. Matsuta, K. Mihara, M. Momota, S. Nagae, D. Nguyen, N. D. Nishimura, D. Otsuka, T. Ozawa, A. Ren, P. P. Sakaguchi, H. Scheidenberger, C. Tanaka, J. Takechi, M. Wada, R. Yamamoto, T. |
author_sort | Tran, D. T. |
collection | PubMed |
description | The nuclear shell structure, which originates in the nearly independent motion of nucleons in an average potential, provides an important guide for our understanding of nuclear structure and the underlying nuclear forces. Its most remarkable fingerprint is the existence of the so-called magic numbers of protons and neutrons associated with extra stability. Although the introduction of a phenomenological spin–orbit (SO) coupling force in 1949 helped in explaining the magic numbers, its origins are still open questions. Here, we present experimental evidence for the smallest SO-originated magic number (subshell closure) at the proton number six in (13–20)C obtained from systematic analysis of point-proton distribution radii, electromagnetic transition rates and atomic masses of light nuclei. Performing ab initio calculations on (14,15)C, we show that the observed proton distribution radii and subshell closure can be explained by the state-of-the-art nuclear theory with chiral nucleon–nucleon and three-nucleon forces, which are rooted in the quantum chromodynamics. |
format | Online Article Text |
id | pubmed-5913314 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-59133142018-04-25 Evidence for prevalent Z = 6 magic number in neutron-rich carbon isotopes Tran, D. T. Ong, H. J. Hagen, G. Morris, T. D. Aoi, N. Suzuki, T. Kanada-En’yo, Y. Geng, L. S. Terashima, S. Tanihata, I. Nguyen, T. T. Ayyad, Y. Chan, P. Y. Fukuda, M. Geissel, H. Harakeh, M. N. Hashimoto, T. Hoang, T. H. Ideguchi, E. Inoue, A. Jansen, G. R. Kanungo, R. Kawabata, T. Khiem, L. H. Lin, W. P. Matsuta, K. Mihara, M. Momota, S. Nagae, D. Nguyen, N. D. Nishimura, D. Otsuka, T. Ozawa, A. Ren, P. P. Sakaguchi, H. Scheidenberger, C. Tanaka, J. Takechi, M. Wada, R. Yamamoto, T. Nat Commun Article The nuclear shell structure, which originates in the nearly independent motion of nucleons in an average potential, provides an important guide for our understanding of nuclear structure and the underlying nuclear forces. Its most remarkable fingerprint is the existence of the so-called magic numbers of protons and neutrons associated with extra stability. Although the introduction of a phenomenological spin–orbit (SO) coupling force in 1949 helped in explaining the magic numbers, its origins are still open questions. Here, we present experimental evidence for the smallest SO-originated magic number (subshell closure) at the proton number six in (13–20)C obtained from systematic analysis of point-proton distribution radii, electromagnetic transition rates and atomic masses of light nuclei. Performing ab initio calculations on (14,15)C, we show that the observed proton distribution radii and subshell closure can be explained by the state-of-the-art nuclear theory with chiral nucleon–nucleon and three-nucleon forces, which are rooted in the quantum chromodynamics. Nature Publishing Group UK 2018-04-23 /pmc/articles/PMC5913314/ /pubmed/29686394 http://dx.doi.org/10.1038/s41467-018-04024-y Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Tran, D. T. Ong, H. J. Hagen, G. Morris, T. D. Aoi, N. Suzuki, T. Kanada-En’yo, Y. Geng, L. S. Terashima, S. Tanihata, I. Nguyen, T. T. Ayyad, Y. Chan, P. Y. Fukuda, M. Geissel, H. Harakeh, M. N. Hashimoto, T. Hoang, T. H. Ideguchi, E. Inoue, A. Jansen, G. R. Kanungo, R. Kawabata, T. Khiem, L. H. Lin, W. P. Matsuta, K. Mihara, M. Momota, S. Nagae, D. Nguyen, N. D. Nishimura, D. Otsuka, T. Ozawa, A. Ren, P. P. Sakaguchi, H. Scheidenberger, C. Tanaka, J. Takechi, M. Wada, R. Yamamoto, T. Evidence for prevalent Z = 6 magic number in neutron-rich carbon isotopes |
title | Evidence for prevalent Z = 6 magic number in neutron-rich carbon isotopes |
title_full | Evidence for prevalent Z = 6 magic number in neutron-rich carbon isotopes |
title_fullStr | Evidence for prevalent Z = 6 magic number in neutron-rich carbon isotopes |
title_full_unstemmed | Evidence for prevalent Z = 6 magic number in neutron-rich carbon isotopes |
title_short | Evidence for prevalent Z = 6 magic number in neutron-rich carbon isotopes |
title_sort | evidence for prevalent z = 6 magic number in neutron-rich carbon isotopes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5913314/ https://www.ncbi.nlm.nih.gov/pubmed/29686394 http://dx.doi.org/10.1038/s41467-018-04024-y |
work_keys_str_mv | AT trandt evidenceforprevalentz6magicnumberinneutronrichcarbonisotopes AT onghj evidenceforprevalentz6magicnumberinneutronrichcarbonisotopes AT hageng evidenceforprevalentz6magicnumberinneutronrichcarbonisotopes AT morristd evidenceforprevalentz6magicnumberinneutronrichcarbonisotopes AT aoin evidenceforprevalentz6magicnumberinneutronrichcarbonisotopes AT suzukit evidenceforprevalentz6magicnumberinneutronrichcarbonisotopes AT kanadaenyoy evidenceforprevalentz6magicnumberinneutronrichcarbonisotopes AT gengls evidenceforprevalentz6magicnumberinneutronrichcarbonisotopes AT terashimas evidenceforprevalentz6magicnumberinneutronrichcarbonisotopes AT tanihatai evidenceforprevalentz6magicnumberinneutronrichcarbonisotopes AT nguyentt evidenceforprevalentz6magicnumberinneutronrichcarbonisotopes AT ayyady evidenceforprevalentz6magicnumberinneutronrichcarbonisotopes AT chanpy evidenceforprevalentz6magicnumberinneutronrichcarbonisotopes AT fukudam evidenceforprevalentz6magicnumberinneutronrichcarbonisotopes AT geisselh evidenceforprevalentz6magicnumberinneutronrichcarbonisotopes AT harakehmn evidenceforprevalentz6magicnumberinneutronrichcarbonisotopes AT hashimotot evidenceforprevalentz6magicnumberinneutronrichcarbonisotopes AT hoangth evidenceforprevalentz6magicnumberinneutronrichcarbonisotopes AT ideguchie evidenceforprevalentz6magicnumberinneutronrichcarbonisotopes AT inouea evidenceforprevalentz6magicnumberinneutronrichcarbonisotopes AT jansengr evidenceforprevalentz6magicnumberinneutronrichcarbonisotopes AT kanungor evidenceforprevalentz6magicnumberinneutronrichcarbonisotopes AT kawabatat evidenceforprevalentz6magicnumberinneutronrichcarbonisotopes AT khiemlh evidenceforprevalentz6magicnumberinneutronrichcarbonisotopes AT linwp evidenceforprevalentz6magicnumberinneutronrichcarbonisotopes AT matsutak evidenceforprevalentz6magicnumberinneutronrichcarbonisotopes AT miharam evidenceforprevalentz6magicnumberinneutronrichcarbonisotopes AT momotas evidenceforprevalentz6magicnumberinneutronrichcarbonisotopes AT nagaed evidenceforprevalentz6magicnumberinneutronrichcarbonisotopes AT nguyennd evidenceforprevalentz6magicnumberinneutronrichcarbonisotopes AT nishimurad evidenceforprevalentz6magicnumberinneutronrichcarbonisotopes AT otsukat evidenceforprevalentz6magicnumberinneutronrichcarbonisotopes AT ozawaa evidenceforprevalentz6magicnumberinneutronrichcarbonisotopes AT renpp evidenceforprevalentz6magicnumberinneutronrichcarbonisotopes AT sakaguchih evidenceforprevalentz6magicnumberinneutronrichcarbonisotopes AT scheidenbergerc evidenceforprevalentz6magicnumberinneutronrichcarbonisotopes AT tanakaj evidenceforprevalentz6magicnumberinneutronrichcarbonisotopes AT takechim evidenceforprevalentz6magicnumberinneutronrichcarbonisotopes AT wadar evidenceforprevalentz6magicnumberinneutronrichcarbonisotopes AT yamamotot evidenceforprevalentz6magicnumberinneutronrichcarbonisotopes |