Cargando…
Machine Learning in Radiation Oncology: Opportunities, Requirements, and Needs
Machine learning (ML) has the potential to revolutionize the field of radiation oncology, but there is much work to be done. In this article, we approach the radiotherapy process from a workflow perspective, identifying specific areas where a data-centric approach using ML could improve the quality...
Autores principales: | Feng, Mary, Valdes, Gilmer, Dixit, Nayha, Solberg, Timothy D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5913324/ https://www.ncbi.nlm.nih.gov/pubmed/29719815 http://dx.doi.org/10.3389/fonc.2018.00110 |
Ejemplares similares
-
Editorial: Machine learning in radiation oncology
por: Zhao, Wei, et al.
Publicado: (2022) -
IMRT QA using machine learning: A multi‐institutional validation
por: Valdes, Gilmer, et al.
Publicado: (2017) -
Exploratory analysis using machine learning to predict for chest wall pain in patients with stage I non‐small‐cell lung cancer treated with stereotactic body radiation therapy
por: Chao, Hann‐Hsiang, et al.
Publicado: (2018) -
Emerging Translational Opportunities in Comparative Oncology With Companion Canine Cancers: Radiation Oncology
por: Nolan, Michael W., et al.
Publicado: (2019) -
Editorial: Machine Learning With Radiation Oncology Big Data
por: Deng, Jun, et al.
Publicado: (2018)