Cargando…
Managing Patient-Generated Health Data Through Mobile Personal Health Records: Analysis of Usage Data
BACKGROUND: Personal health records (PHRs) and mHealth apps are considered essential tools for patient engagement. Mobile PHRs (mPHRs) can be a platform to integrate patient-generated health data (PGHD) and patients’ medical information. However, in previous studies, actual usage data and PGHD from...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5913571/ https://www.ncbi.nlm.nih.gov/pubmed/29631989 http://dx.doi.org/10.2196/mhealth.9620 |
Sumario: | BACKGROUND: Personal health records (PHRs) and mHealth apps are considered essential tools for patient engagement. Mobile PHRs (mPHRs) can be a platform to integrate patient-generated health data (PGHD) and patients’ medical information. However, in previous studies, actual usage data and PGHD from mPHRs have not been able to adequately represent patient engagement. OBJECTIVE: By analyzing 5 years’ PGHD from an mPHR system developed by a tertiary hospital in South Korea, we aimed to evaluate how PGHD were managed and identify issues in PGHD management based on actual usage data. Additionally, we analyzed how to improve patient engagement with mPHRs by analyzing the actively used services and long-term usage patterns. METHODS: We gathered 5 years (December 2010 to December 2015) of log data from both hospital patients and general users of the app. We gathered data from users who entered PGHD on body weight, blood pressure (BP), blood glucose levels, 10-year cardiovascular disease (CVD) risk, metabolic syndrome risk, medication schedule, insulin, and allergy. We classified users according to whether they were patients or general users based on factors related to continuous use (≥28 days for weight, BP, and blood glucose, and ≥180 days for CVD and metabolic syndrome), and analyzed the patients’ characteristics. We compared PGHD entry counts and the proportion of continuous users for each PGHD by user type. RESULTS: The total number of mPHR users was 18,265 (patients: n=16,729, 91.59%) with 3620 users having entered weight, followed by BP (n=1625), blood glucose (n=1374), CVD (n=764), metabolic syndrome (n=685), medication (n=252), insulin (n=72), and allergy (n=61). Of those 18,256 users, 3812 users had at least one PGHD measurement, of whom 175 used the PGHD functions continuously (patients: n=142, 81.14%); less than 1% of the users had used it for more than 4 years. Except for weight, BP, blood glucose, CVD, and metabolic syndrome, the number of PGHD records declined. General users’ continuous use of PGHD was significantly higher than that of patients in the blood glucose (P<.001) and BP (P=.03) functions. Continuous use of PGHD in health management (BP, blood glucose, and weight) was significantly greater among older users (P<.001) and men (P<.001). In health management (BP, weight, and blood glucose), overall chronic disease and continuous use of PGHD were not statistically related (P=.08), but diabetes (P<.001) and cerebrovascular diseases (P=.03) were significant. CONCLUSIONS: Although a small portion of users managed PGHD continuously, PGHD has the potential to be useful in monitoring patient health. To realize the potential, specific groups of continuous users must be identified, and the PGHD service must target them. Further evaluations for the clinical application of PGHD, feedback regarding user interfaces, and connections with wearable devices are needed. |
---|