Cargando…

RADpainter and fineRADstructure: Population Inference from RADseq Data

Powerful approaches to inferring recent or current population structure based on nearest neighbor haplotype “coancestry” have so far been inaccessible to users without high quality genome-wide haplotype data. With a boom in nonmodel organism genomics, there is a pressing need to bring these methods...

Descripción completa

Detalles Bibliográficos
Autores principales: Malinsky, Milan, Trucchi, Emiliano, Lawson, Daniel John, Falush, Daniel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5913677/
https://www.ncbi.nlm.nih.gov/pubmed/29474601
http://dx.doi.org/10.1093/molbev/msy023
Descripción
Sumario:Powerful approaches to inferring recent or current population structure based on nearest neighbor haplotype “coancestry” have so far been inaccessible to users without high quality genome-wide haplotype data. With a boom in nonmodel organism genomics, there is a pressing need to bring these methods to communities without access to such data. Here, we present RADpainter, a new program designed to infer the coancestry matrix from restriction-site-associated DNA sequencing (RADseq) data. We combine this program together with a previously published MCMC clustering algorithm into fineRADstructure—a complete, easy to use, and fast population inference package for RADseq data (https://github.com/millanek/fineRADstructure; last accessed February 24, 2018). Finally, with two example data sets, we illustrate its use, benefits, and robustness to missing RAD alleles in double digest RAD sequencing.