Cargando…

Identification of a novel non-sense mutation in TBX5 gene in pediatric patients with congenital heart defects

Introduction: Congenital heart diseases (CHDs) are structural cardiovascular malformations that arise from abnormal development of the heart during the prenatal life. Mutations in the TBX5 gene, encoding T-box transcription factor, are a major cause of CHD. To evaluate the TBX5 mutations in hotspot...

Descripción completa

Detalles Bibliográficos
Autores principales: Khatami, Mehri, Heidari, Mohammad Mehdi, Kazeminasab, Fatemeh, Zare Bidaki, Razieh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Tabriz University of Medical Sciences 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5913692/
https://www.ncbi.nlm.nih.gov/pubmed/29707177
http://dx.doi.org/10.15171/jcvtr.2018.07
_version_ 1783316586563633152
author Khatami, Mehri
Heidari, Mohammad Mehdi
Kazeminasab, Fatemeh
Zare Bidaki, Razieh
author_facet Khatami, Mehri
Heidari, Mohammad Mehdi
Kazeminasab, Fatemeh
Zare Bidaki, Razieh
author_sort Khatami, Mehri
collection PubMed
description Introduction: Congenital heart diseases (CHDs) are structural cardiovascular malformations that arise from abnormal development of the heart during the prenatal life. Mutations in the TBX5 gene, encoding T-box transcription factor, are a major cause of CHD. To evaluate the TBX5 mutations in hotspot exons in sporadic pediatric patients with CHD phenotypes, analytical case/control study performed in an Iranian cohort of unrelated patients with clinical diagnosis of congenital heart malformations. Methods: We investigated TBX5 coding exons 4, 5, 6 and 7 in 95 sporadic patients with CHD phenotypes and compared to 82 healthy controls using PCR-SSCP and DNA sequencing approaches. Results: We report here on a novel and heterozygote Non-sense mutation in exon 5 of TBX5, E128X (G14742T), in two Iranian children. This mutation locates inside the T-box and both of pediatric patients carrying this novel mutation suffer from severe heart malformations. The G14742T mutation leads to the substitution of glutamic acid (E) by stop codon (X) at residue 128, an evolutionarily conserved position in T-box as well as in other species. The non-sense mutation of E128X was predicted to be pathogenic by Mutation Taster and Polyphen software programs. Conclusion: TBX5 E128X mutation results in a translational premature stop. This type of mutation results in a shortened protein that may function improperly and which cannot bind to other transcription factors; therefore, haploinsufficiency of TBX5 protein is presumably causing the severe cardiac malformations in these patients.
format Online
Article
Text
id pubmed-5913692
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Tabriz University of Medical Sciences
record_format MEDLINE/PubMed
spelling pubmed-59136922018-04-27 Identification of a novel non-sense mutation in TBX5 gene in pediatric patients with congenital heart defects Khatami, Mehri Heidari, Mohammad Mehdi Kazeminasab, Fatemeh Zare Bidaki, Razieh J Cardiovasc Thorac Res Original Article Introduction: Congenital heart diseases (CHDs) are structural cardiovascular malformations that arise from abnormal development of the heart during the prenatal life. Mutations in the TBX5 gene, encoding T-box transcription factor, are a major cause of CHD. To evaluate the TBX5 mutations in hotspot exons in sporadic pediatric patients with CHD phenotypes, analytical case/control study performed in an Iranian cohort of unrelated patients with clinical diagnosis of congenital heart malformations. Methods: We investigated TBX5 coding exons 4, 5, 6 and 7 in 95 sporadic patients with CHD phenotypes and compared to 82 healthy controls using PCR-SSCP and DNA sequencing approaches. Results: We report here on a novel and heterozygote Non-sense mutation in exon 5 of TBX5, E128X (G14742T), in two Iranian children. This mutation locates inside the T-box and both of pediatric patients carrying this novel mutation suffer from severe heart malformations. The G14742T mutation leads to the substitution of glutamic acid (E) by stop codon (X) at residue 128, an evolutionarily conserved position in T-box as well as in other species. The non-sense mutation of E128X was predicted to be pathogenic by Mutation Taster and Polyphen software programs. Conclusion: TBX5 E128X mutation results in a translational premature stop. This type of mutation results in a shortened protein that may function improperly and which cannot bind to other transcription factors; therefore, haploinsufficiency of TBX5 protein is presumably causing the severe cardiac malformations in these patients. Tabriz University of Medical Sciences 2018 2018-03-17 /pmc/articles/PMC5913692/ /pubmed/29707177 http://dx.doi.org/10.15171/jcvtr.2018.07 Text en © 2018 The Author(s) This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Article
Khatami, Mehri
Heidari, Mohammad Mehdi
Kazeminasab, Fatemeh
Zare Bidaki, Razieh
Identification of a novel non-sense mutation in TBX5 gene in pediatric patients with congenital heart defects
title Identification of a novel non-sense mutation in TBX5 gene in pediatric patients with congenital heart defects
title_full Identification of a novel non-sense mutation in TBX5 gene in pediatric patients with congenital heart defects
title_fullStr Identification of a novel non-sense mutation in TBX5 gene in pediatric patients with congenital heart defects
title_full_unstemmed Identification of a novel non-sense mutation in TBX5 gene in pediatric patients with congenital heart defects
title_short Identification of a novel non-sense mutation in TBX5 gene in pediatric patients with congenital heart defects
title_sort identification of a novel non-sense mutation in tbx5 gene in pediatric patients with congenital heart defects
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5913692/
https://www.ncbi.nlm.nih.gov/pubmed/29707177
http://dx.doi.org/10.15171/jcvtr.2018.07
work_keys_str_mv AT khatamimehri identificationofanovelnonsensemutationintbx5geneinpediatricpatientswithcongenitalheartdefects
AT heidarimohammadmehdi identificationofanovelnonsensemutationintbx5geneinpediatricpatientswithcongenitalheartdefects
AT kazeminasabfatemeh identificationofanovelnonsensemutationintbx5geneinpediatricpatientswithcongenitalheartdefects
AT zarebidakirazieh identificationofanovelnonsensemutationintbx5geneinpediatricpatientswithcongenitalheartdefects