Cargando…
A Dynamic Connectome Supports the Emergence of Stable Computational Function of Neural Circuits through Reward-Based Learning
Synaptic connections between neurons in the brain are dynamic because of continuously ongoing spine dynamics, axonal sprouting, and other processes. In fact, it was recently shown that the spontaneous synapse-autonomous component of spine dynamics is at least as large as the component that depends o...
Autores principales: | Kappel, David, Legenstein, Robert, Habenschuss, Stefan, Hsieh, Michael, Maass, Wolfgang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society for Neuroscience
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5913731/ https://www.ncbi.nlm.nih.gov/pubmed/29696150 http://dx.doi.org/10.1523/ENEURO.0301-17.2018 |
Ejemplares similares
-
A Model for Structured Information Representation in Neural Networks of the Brain
por: Müller, Michael G., et al.
Publicado: (2020) -
Learning Probabilistic Inference through Spike-Timing-Dependent Plasticity123
por: Pecevski, Dejan, et al.
Publicado: (2016) -
Network Plasticity as Bayesian Inference
por: Kappel, David, et al.
Publicado: (2015) -
Modulation of a Single Neuron Has State-Dependent Actions on Circuit Dynamics(1,2,3)
por: Gutierrez, Gabrielle J., et al.
Publicado: (2014) -
A Multilevel Computational Characterization of Endophenotypes in Addiction
por: Fiore, Vincenzo G., et al.
Publicado: (2018)