Cargando…
Effects of repeated sprints training on fracture risk-associated miRNA
Repeated-sprint training (RS, short-duration sprints at supramaximal intensities interspersed with brief recoveries) is a time-saving metabolically effective strategy whose effects on bone are unknown. Bone metabolism is a finely regulated process profoundly affected by exercise as assayable by stud...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5915055/ https://www.ncbi.nlm.nih.gov/pubmed/29719588 http://dx.doi.org/10.18632/oncotarget.24707 |
Sumario: | Repeated-sprint training (RS, short-duration sprints at supramaximal intensities interspersed with brief recoveries) is a time-saving metabolically effective strategy whose effects on bone are unknown. Bone metabolism is a finely regulated process profoundly affected by exercise as assayable by studying specific systemic (e.g., hormones, cytokines) and bone-derived molecules (e.g., bone markers, miRNAs). Aim of this study was to determine the effect of a 8-week repeated-sprint on circulating levels of fracture risk-associated miRNA. Blood was collected from 9 subjects performing RS 3 times/week (EXP) and 9 age-matched inactive controls (CTRL) before the start of the protocol (T0) and after 4 (T1) and 8 weeks (T2). The relative expression of miR-21-5p, miR-23a-3p, miR-24-3p, miR93-5p, miR-100-5p, miR-122-5p, miR-124-3p, miR-125b-5p, miR-148a-3p, miR-637 was assayed by real-time PCR by the 2(−ΔΔCT) method (housekeeping: miR-425-5p, miR-484). Serum concentrations of bone markers (DKK1, sclerostin, osteoprotegerin, osteocalcin, osteopontin), cytokines (IL-1β, TNFα), and metabolic hormones (leptin, insulin, PTH) were assayed by multiplex assay. miR-637 and miR-124-3p were undetectable. In CTRL miRNA levels remained unchanged. In EXP miR-21-5p remained unchanged. Compared to T0 miR-23a-3p and miR-24-3p were significantly decreased at T1 and T2, also compared to CTRL, miR-100 was significantly decreased at T2, miR-122-5p, miR-125-5p, and miR148a-3p were significantly decreased at T1, while miR-93-5p was significantly increased at T1. None of the metabolic hormones was affected by the intervention while, among the bone markers, DKK1, osteocalcin and sclerostin were slightly but significantly decreased. In conclusion, an 8-week repeated-sprint training downregulates the expression of circulating miRNA associated with fracture risk. |
---|