Cargando…

A TRPV2 interactome-based signature for prognosis in glioblastoma patients

Proteomics aids to the discovery and expansion of protein-protein interaction networks, which are key to understand molecular mechanisms in physiology and physiopathology, but also to infer protein function in a guilt-by-association fashion. In this study we use a systematic protein-protein interact...

Descripción completa

Detalles Bibliográficos
Autores principales: Doñate-Macián, Pau, Gómez, Antonio, Dégano, Irene R., Perálvarez-Marín, Alex
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5915080/
https://www.ncbi.nlm.nih.gov/pubmed/29719613
http://dx.doi.org/10.18632/oncotarget.24843
_version_ 1783316811179098112
author Doñate-Macián, Pau
Gómez, Antonio
Dégano, Irene R.
Perálvarez-Marín, Alex
author_facet Doñate-Macián, Pau
Gómez, Antonio
Dégano, Irene R.
Perálvarez-Marín, Alex
author_sort Doñate-Macián, Pau
collection PubMed
description Proteomics aids to the discovery and expansion of protein-protein interaction networks, which are key to understand molecular mechanisms in physiology and physiopathology, but also to infer protein function in a guilt-by-association fashion. In this study we use a systematic protein-protein interaction membrane yeast two-hybrid method to expand the interactome of TRPV2, a cation channel related to nervous system development. After validation of the interactome in silico, we define a TRPV2-interactome signature combining proteomics with the available physio-pathological data in Disgenet to find interactome-disease associations, highlighting nervous system disorders and neoplasms. The TRPV2-interactome signature against available experimental data is capable of discriminating overall risk in glioblastoma multiforme prognosis, progression, recurrence, and chemotherapy resistance. Beyond the impact on glioblastoma physiopathology, this study shows that combining systematic proteomics with in silico methods and available experimental data is key to open new perspectives to define novel biomarkers for diagnosis, prognosis and therapeutics in disease.
format Online
Article
Text
id pubmed-5915080
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Impact Journals LLC
record_format MEDLINE/PubMed
spelling pubmed-59150802018-05-01 A TRPV2 interactome-based signature for prognosis in glioblastoma patients Doñate-Macián, Pau Gómez, Antonio Dégano, Irene R. Perálvarez-Marín, Alex Oncotarget Research Paper Proteomics aids to the discovery and expansion of protein-protein interaction networks, which are key to understand molecular mechanisms in physiology and physiopathology, but also to infer protein function in a guilt-by-association fashion. In this study we use a systematic protein-protein interaction membrane yeast two-hybrid method to expand the interactome of TRPV2, a cation channel related to nervous system development. After validation of the interactome in silico, we define a TRPV2-interactome signature combining proteomics with the available physio-pathological data in Disgenet to find interactome-disease associations, highlighting nervous system disorders and neoplasms. The TRPV2-interactome signature against available experimental data is capable of discriminating overall risk in glioblastoma multiforme prognosis, progression, recurrence, and chemotherapy resistance. Beyond the impact on glioblastoma physiopathology, this study shows that combining systematic proteomics with in silico methods and available experimental data is key to open new perspectives to define novel biomarkers for diagnosis, prognosis and therapeutics in disease. Impact Journals LLC 2018-04-06 /pmc/articles/PMC5915080/ /pubmed/29719613 http://dx.doi.org/10.18632/oncotarget.24843 Text en Copyright: © 2018 Doñate-Macián et al. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (http://creativecommons.org/licenses/by/3.0/) (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Paper
Doñate-Macián, Pau
Gómez, Antonio
Dégano, Irene R.
Perálvarez-Marín, Alex
A TRPV2 interactome-based signature for prognosis in glioblastoma patients
title A TRPV2 interactome-based signature for prognosis in glioblastoma patients
title_full A TRPV2 interactome-based signature for prognosis in glioblastoma patients
title_fullStr A TRPV2 interactome-based signature for prognosis in glioblastoma patients
title_full_unstemmed A TRPV2 interactome-based signature for prognosis in glioblastoma patients
title_short A TRPV2 interactome-based signature for prognosis in glioblastoma patients
title_sort trpv2 interactome-based signature for prognosis in glioblastoma patients
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5915080/
https://www.ncbi.nlm.nih.gov/pubmed/29719613
http://dx.doi.org/10.18632/oncotarget.24843
work_keys_str_mv AT donatemacianpau atrpv2interactomebasedsignatureforprognosisinglioblastomapatients
AT gomezantonio atrpv2interactomebasedsignatureforprognosisinglioblastomapatients
AT deganoirener atrpv2interactomebasedsignatureforprognosisinglioblastomapatients
AT peralvarezmarinalex atrpv2interactomebasedsignatureforprognosisinglioblastomapatients
AT donatemacianpau trpv2interactomebasedsignatureforprognosisinglioblastomapatients
AT gomezantonio trpv2interactomebasedsignatureforprognosisinglioblastomapatients
AT deganoirener trpv2interactomebasedsignatureforprognosisinglioblastomapatients
AT peralvarezmarinalex trpv2interactomebasedsignatureforprognosisinglioblastomapatients