Cargando…
Global Similarity Method Based on a Two-tier Random Walk for the Prediction of microRNA–Disease Association
microRNAs (miRNAs) mutation and maladjustment are related to the occurrence and development of human diseases. Studies on disease-associated miRNA have contributed to disease diagnosis and treatment. To address the problems, such as low prediction accuracy and failure to predict the relationship bet...
Autores principales: | Chen, Min, Liao, Bo, Li, Zejun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5915491/ https://www.ncbi.nlm.nih.gov/pubmed/29691434 http://dx.doi.org/10.1038/s41598-018-24532-7 |
Ejemplares similares
-
Global network random walk for predicting potential human lncRNA-disease associations
por: Gu, Changlong, et al.
Publicado: (2017) -
Uncover miRNA-Disease Association by Exploiting Global Network Similarity
por: Chen, Min, et al.
Publicado: (2016) -
Prediction of Associations between OMIM Diseases and MicroRNAs by Random Walk on OMIM Disease Similarity Network
por: Chen, Hailin, et al.
Publicado: (2013) -
MicroRNA prediction with a novel ranking algorithm based on random walks
por: Xu, Yunpen, et al.
Publicado: (2008) -
Random walks on mutual microRNA-target gene interaction network improve the prediction of disease-associated microRNAs
por: Le, Duc-Hau, et al.
Publicado: (2017)