Cargando…
Robust detrending, rereferencing, outlier detection, and inpainting for multichannel data
Electroencephalography (EEG), magnetoencephalography (MEG) and related techniques are prone to glitches, slow drift, steps, etc., that contaminate the data and interfere with the analysis and interpretation. These artifacts are usually addressed in a preprocessing phase that attempts to remove them...
Autores principales: | de Cheveigné, Alain, Arzounian, Dorothée |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5915520/ https://www.ncbi.nlm.nih.gov/pubmed/29448077 http://dx.doi.org/10.1016/j.neuroimage.2018.01.035 |
Ejemplares similares
-
Multichannel Detrended Fluctuation Analysis Reveals Synchronized Patterns of Spontaneous Spinal Activity in Anesthetized Cats
por: Rodríguez, Erika E., et al.
Publicado: (2011) -
Evaluation of robust outlier detection methods for zero-inflated complex data
por: Templ, M., et al.
Publicado: (2019) -
Inpainting and denoising challenges
por: Escalera, Sergio, et al.
Publicado: (2019) -
Improving Data-Efficiency and Robustness of Medical Imaging Segmentation Using Inpainting-Based Self-Supervised Learning
por: Dominic, Jeffrey, et al.
Publicado: (2023) -
Robust subspace methods for outlier detection in genomic data circumvents the curse of dimensionality
por: Shetta, Omar, et al.
Publicado: (2020)