Cargando…

Vascular reactivity in small cerebral perforating arteries with 7 T phase contrast MRI – A proof of concept study

Existing cerebrovascular reactivity (CVR) techniques assess flow reactivity in either the largest cerebral vessels or at the level of the parenchyma. We examined the ability of 2D phase contrast MRI at 7 T to measure CVR in small cerebral perforating arteries. Blood flow velocity in perforators was...

Descripción completa

Detalles Bibliográficos
Autores principales: Geurts, Lennart J., Bhogal, Alex A., Siero, Jeroen C.W., Luijten, Peter R., Biessels, Geert Jan, Zwanenburg, Jaco J.M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Academic Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5915583/
https://www.ncbi.nlm.nih.gov/pubmed/29408324
http://dx.doi.org/10.1016/j.neuroimage.2018.01.055
Descripción
Sumario:Existing cerebrovascular reactivity (CVR) techniques assess flow reactivity in either the largest cerebral vessels or at the level of the parenchyma. We examined the ability of 2D phase contrast MRI at 7 T to measure CVR in small cerebral perforating arteries. Blood flow velocity in perforators was measured in 10 healthy volunteers (mean age 26 years) using a 7 T MR scanner, using phase contrast acquisitions in the semioval center (CSO), the basal ganglia (BG) and the middle cerebral artery (MCA). Changes in flow velocity in response to a hypercapnic breathing challenge were assessed, and expressed as the percentual increase of flow velocity as a function of the increase in end tidal partial pressure of CO(2). The hypercapnic challenge increased (fit ± standard error) flow velocity by 0.7 ± 0.3%/mmHg in the CSO (P < 0.01). Moreover, the number of detected perforators (mean [range]) increased from 63 [27–88] to 108 [61–178] (P < 0.001). In the BG, the hypercapnic challenge increased flow velocity by 1.6 ± 0.5%/mmHg (P < 0.001), and the number of detected perforators increased from 48 [24–66] to 63 [32–91] (P < 0.01). The flow in the MCA increased by 5.2 ± 1.4%/mmHg (P < 0.01). Small vessel specific reactivity can now be measured in perforators of the CSO and BG, using 2D phase contrast at 7 T.