Cargando…
A fast-converging iterative method based on weighted feedback for multi-distance phase retrieval
Multiple distance phase retrieval methods hold great promise for imaging and measurement due to their less expensive and compact setup. As one of their implementations, the amplitude-phase retrieval algorithm (APR) can achieve stable and high-accuracy reconstruction. However, it suffers from the slo...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5915585/ https://www.ncbi.nlm.nih.gov/pubmed/29691451 http://dx.doi.org/10.1038/s41598-018-24666-8 |
Sumario: | Multiple distance phase retrieval methods hold great promise for imaging and measurement due to their less expensive and compact setup. As one of their implementations, the amplitude-phase retrieval algorithm (APR) can achieve stable and high-accuracy reconstruction. However, it suffers from the slow convergence and the stagnant issue. Here we propose an iterative modality named as weighted feedback to solve this problem. With the plug-ins of single and double feedback, two augmented approaches, i.e. the APRSF and APRDF algorithms, are demonstrated to increase the convergence speed with a factor of two and three in experiments. Furthermore, the APRDF algorithm can extend the multiple distance phase retrieval to the partially coherent illumination and enhance the imaging contrast of both amplitude and phase, which actually relaxes the light source requirement. Thus the weighted feedback enables a fast-converging and high-contrast imaging scheme for the iterative phase retrieval. |
---|