Cargando…
Characterizing the contribution of plasticity and genetic differentiation to community‐level trait responses to environmental change
The match between functional trait variation in communities and environmental gradients is maintained by three processes: phenotypic plasticity and genetic differentiation (intraspecific processes), and species turnover (interspecific). Recently, evidence has emerged suggesting that intraspecific va...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5916269/ https://www.ncbi.nlm.nih.gov/pubmed/29721266 http://dx.doi.org/10.1002/ece3.3947 |
_version_ | 1783316989276585984 |
---|---|
author | Lajoie, Geneviève Vellend, Mark |
author_facet | Lajoie, Geneviève Vellend, Mark |
author_sort | Lajoie, Geneviève |
collection | PubMed |
description | The match between functional trait variation in communities and environmental gradients is maintained by three processes: phenotypic plasticity and genetic differentiation (intraspecific processes), and species turnover (interspecific). Recently, evidence has emerged suggesting that intraspecific variation might have a potentially large role in driving functional community composition and response to environmental change. However, empirical evidence quantifying the respective importance of phenotypic plasticity and genetic differentiation relative to species turnover is still lacking. We performed a reciprocal transplant experiment using a common herbaceous plant species (Oxalis montana) among low‐, mid‐, and high‐elevation sites to first quantify the contributions of plasticity and genetic differentiation in driving intraspecific variation in three traits: height, specific leaf area, and leaf area. We next compared the contributions of these intraspecific drivers of community trait–environment matching to that of species turnover, which had been previously assessed along the same elevational gradient. Plasticity was the dominant driver of intraspecific trait variation across elevation in all traits, with only a small contribution of genetic differentiation among populations. Local adaptation was not detected to a major extent along the gradient. Fitness components were greatest in O. montana plants with trait values closest to the local community‐weighted means, thus supporting the common assumption that community‐weighted mean trait values represent selective optima. Our results suggest that community‐level trait responses to ongoing climate change should be mostly mediated by species turnover, even at the small spatial scale of our study, with an especially small contribution of evolutionary adaptation within species. |
format | Online Article Text |
id | pubmed-5916269 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-59162692018-05-02 Characterizing the contribution of plasticity and genetic differentiation to community‐level trait responses to environmental change Lajoie, Geneviève Vellend, Mark Ecol Evol Original Research The match between functional trait variation in communities and environmental gradients is maintained by three processes: phenotypic plasticity and genetic differentiation (intraspecific processes), and species turnover (interspecific). Recently, evidence has emerged suggesting that intraspecific variation might have a potentially large role in driving functional community composition and response to environmental change. However, empirical evidence quantifying the respective importance of phenotypic plasticity and genetic differentiation relative to species turnover is still lacking. We performed a reciprocal transplant experiment using a common herbaceous plant species (Oxalis montana) among low‐, mid‐, and high‐elevation sites to first quantify the contributions of plasticity and genetic differentiation in driving intraspecific variation in three traits: height, specific leaf area, and leaf area. We next compared the contributions of these intraspecific drivers of community trait–environment matching to that of species turnover, which had been previously assessed along the same elevational gradient. Plasticity was the dominant driver of intraspecific trait variation across elevation in all traits, with only a small contribution of genetic differentiation among populations. Local adaptation was not detected to a major extent along the gradient. Fitness components were greatest in O. montana plants with trait values closest to the local community‐weighted means, thus supporting the common assumption that community‐weighted mean trait values represent selective optima. Our results suggest that community‐level trait responses to ongoing climate change should be mostly mediated by species turnover, even at the small spatial scale of our study, with an especially small contribution of evolutionary adaptation within species. John Wiley and Sons Inc. 2018-03-23 /pmc/articles/PMC5916269/ /pubmed/29721266 http://dx.doi.org/10.1002/ece3.3947 Text en © 2018 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Lajoie, Geneviève Vellend, Mark Characterizing the contribution of plasticity and genetic differentiation to community‐level trait responses to environmental change |
title | Characterizing the contribution of plasticity and genetic differentiation to community‐level trait responses to environmental change |
title_full | Characterizing the contribution of plasticity and genetic differentiation to community‐level trait responses to environmental change |
title_fullStr | Characterizing the contribution of plasticity and genetic differentiation to community‐level trait responses to environmental change |
title_full_unstemmed | Characterizing the contribution of plasticity and genetic differentiation to community‐level trait responses to environmental change |
title_short | Characterizing the contribution of plasticity and genetic differentiation to community‐level trait responses to environmental change |
title_sort | characterizing the contribution of plasticity and genetic differentiation to community‐level trait responses to environmental change |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5916269/ https://www.ncbi.nlm.nih.gov/pubmed/29721266 http://dx.doi.org/10.1002/ece3.3947 |
work_keys_str_mv | AT lajoiegenevieve characterizingthecontributionofplasticityandgeneticdifferentiationtocommunityleveltraitresponsestoenvironmentalchange AT vellendmark characterizingthecontributionofplasticityandgeneticdifferentiationtocommunityleveltraitresponsestoenvironmentalchange |