Cargando…

Crystal structure and equation of state of Fe-Si alloys at super-Earth core conditions

The high-pressure behavior of Fe alloys governs the interior structure and dynamics of super-Earths, rocky extrasolar planets that could be as much as 10 times more massive than Earth. In experiments reaching up to 1300 GPa, we combine laser-driven dynamic ramp compression with in situ x-ray diffrac...

Descripción completa

Detalles Bibliográficos
Autores principales: Wicks, June K., Smith, Raymond F., Fratanduono, Dayne E., Coppari, Federica, Kraus, Richard G., Newman, Matthew G., Rygg, J. Ryan, Eggert, Jon H., Duffy, Thomas S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5916515/
https://www.ncbi.nlm.nih.gov/pubmed/29707632
http://dx.doi.org/10.1126/sciadv.aao5864
Descripción
Sumario:The high-pressure behavior of Fe alloys governs the interior structure and dynamics of super-Earths, rocky extrasolar planets that could be as much as 10 times more massive than Earth. In experiments reaching up to 1300 GPa, we combine laser-driven dynamic ramp compression with in situ x-ray diffraction to study the effect of composition on the crystal structure and density of Fe-Si alloys, a potential constituent of super-Earth cores. We find that Fe-Si alloy with 7 weight % (wt %) Si adopts the hexagonal close-packed structure over the measured pressure range, whereas Fe-15wt%Si is observed in a body-centered cubic structure. This study represents the first experimental determination of the density and crystal structure of Fe-Si alloys at pressures corresponding to the center of a ~3–Earth mass terrestrial planet. Our results allow for direct determination of the effects of light elements on core radius, density, and pressures for these planets.