Cargando…

First detection of Wolbachia in the New Zealand biota

Wolbachia is one of the most widespread intracellular bacteria on earth, estimated to infect between 40 and 66% of arthropod species in most ecosystems that have been surveyed. Their significance rests not only in their vast distribution, but also in their ability to modify the reproductive biology...

Descripción completa

Detalles Bibliográficos
Autores principales: Bridgeman, Benjamin, Morgan-Richards, Mary, Wheeler, David, Trewick, Steven A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5918756/
https://www.ncbi.nlm.nih.gov/pubmed/29694414
http://dx.doi.org/10.1371/journal.pone.0195517
_version_ 1783317483573215232
author Bridgeman, Benjamin
Morgan-Richards, Mary
Wheeler, David
Trewick, Steven A.
author_facet Bridgeman, Benjamin
Morgan-Richards, Mary
Wheeler, David
Trewick, Steven A.
author_sort Bridgeman, Benjamin
collection PubMed
description Wolbachia is one of the most widespread intracellular bacteria on earth, estimated to infect between 40 and 66% of arthropod species in most ecosystems that have been surveyed. Their significance rests not only in their vast distribution, but also in their ability to modify the reproductive biology of their hosts, which can ultimately affect genetic diversity and speciation of infected populations. Wolbachia has yet to be formally identified in the fauna of New Zealand which has high levels of endemic biodiversity and this represents a gap in our understanding of the global biology of Wolbachia. Using High Throughput Sequencing (HTS) of host DNA in conjunction with traditional molecular techniques we identified six endemic Orthoptera species that were positive for Wolbachia infection. In addition, short-sequence amplification with Wolbachia specific primers applied to New Zealand and introduced invertebrates detected a further 153 individuals positive for Wolbachia. From these short-range DNA amplification products sequence data was obtained for the ftsZ gene region from 86 individuals representing 10 host species. Phylogenetic analysis using the sequences obtained in this study reveals that there are two distinct Wolbachia bacteria lineages in New Zealand hosts belonging to recognised Wolbachia supergroups (A and B). These represent the first described instances of Wolbachia in the New Zealand native fauna, including detection in putative parasitoids of infected Orthoptera suggesting a possible transmission path. Our detection of Wolbachia infections of New Zealand species provides the opportunity to study local transmission of Wolbachia and explore their role in the evolution of New Zealand invertebrates.
format Online
Article
Text
id pubmed-5918756
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-59187562018-05-05 First detection of Wolbachia in the New Zealand biota Bridgeman, Benjamin Morgan-Richards, Mary Wheeler, David Trewick, Steven A. PLoS One Research Article Wolbachia is one of the most widespread intracellular bacteria on earth, estimated to infect between 40 and 66% of arthropod species in most ecosystems that have been surveyed. Their significance rests not only in their vast distribution, but also in their ability to modify the reproductive biology of their hosts, which can ultimately affect genetic diversity and speciation of infected populations. Wolbachia has yet to be formally identified in the fauna of New Zealand which has high levels of endemic biodiversity and this represents a gap in our understanding of the global biology of Wolbachia. Using High Throughput Sequencing (HTS) of host DNA in conjunction with traditional molecular techniques we identified six endemic Orthoptera species that were positive for Wolbachia infection. In addition, short-sequence amplification with Wolbachia specific primers applied to New Zealand and introduced invertebrates detected a further 153 individuals positive for Wolbachia. From these short-range DNA amplification products sequence data was obtained for the ftsZ gene region from 86 individuals representing 10 host species. Phylogenetic analysis using the sequences obtained in this study reveals that there are two distinct Wolbachia bacteria lineages in New Zealand hosts belonging to recognised Wolbachia supergroups (A and B). These represent the first described instances of Wolbachia in the New Zealand native fauna, including detection in putative parasitoids of infected Orthoptera suggesting a possible transmission path. Our detection of Wolbachia infections of New Zealand species provides the opportunity to study local transmission of Wolbachia and explore their role in the evolution of New Zealand invertebrates. Public Library of Science 2018-04-25 /pmc/articles/PMC5918756/ /pubmed/29694414 http://dx.doi.org/10.1371/journal.pone.0195517 Text en © 2018 Bridgeman et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Bridgeman, Benjamin
Morgan-Richards, Mary
Wheeler, David
Trewick, Steven A.
First detection of Wolbachia in the New Zealand biota
title First detection of Wolbachia in the New Zealand biota
title_full First detection of Wolbachia in the New Zealand biota
title_fullStr First detection of Wolbachia in the New Zealand biota
title_full_unstemmed First detection of Wolbachia in the New Zealand biota
title_short First detection of Wolbachia in the New Zealand biota
title_sort first detection of wolbachia in the new zealand biota
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5918756/
https://www.ncbi.nlm.nih.gov/pubmed/29694414
http://dx.doi.org/10.1371/journal.pone.0195517
work_keys_str_mv AT bridgemanbenjamin firstdetectionofwolbachiainthenewzealandbiota
AT morganrichardsmary firstdetectionofwolbachiainthenewzealandbiota
AT wheelerdavid firstdetectionofwolbachiainthenewzealandbiota
AT trewickstevena firstdetectionofwolbachiainthenewzealandbiota