Cargando…

Effectiveness of the ‘Girls Active’ school-based physical activity programme: A cluster randomised controlled trial

BACKGROUND: Globally, adolescent girls’ physical activity (PA) levels are low. The ‘Girls Active’ secondary school-based programme, developed by the Youth Sport Trust, aims to increase PA in adolescent girls. This paper explores the effectiveness of the ‘Girls Active’ school-based PA programme. METH...

Descripción completa

Detalles Bibliográficos
Autores principales: Harrington, Deirdre M., Davies, Melanie J., Bodicoat, Danielle H., Charles, Joanna M., Chudasama, Yogini V., Gorely, Trish, Khunti, Kamlesh, Plekhanova, Tatiana, Rowlands, Alex V., Sherar, Lauren B., Tudor Edwards, Rhiannon, Yates, Thomas, Edwardson, Charlotte L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5918764/
https://www.ncbi.nlm.nih.gov/pubmed/29695250
http://dx.doi.org/10.1186/s12966-018-0664-6
Descripción
Sumario:BACKGROUND: Globally, adolescent girls’ physical activity (PA) levels are low. The ‘Girls Active’ secondary school-based programme, developed by the Youth Sport Trust, aims to increase PA in adolescent girls. This paper explores the effectiveness of the ‘Girls Active’ school-based PA programme. METHODS: A random sample of girls aged 11–14 from 20 secondary schools (Midlands, UK) participated in a two-arm cluster randomised controlled trial. Ten schools received Girls Active and 10 continued with usual practice. Measurements were taken at baseline, seven- and 14-month follow-up. Primary outcome: wrist-worn accelerometer measured moderate- to vigorous-intensity PA (MVPA). Secondary outcomes: overall PA, light PA, sedentary time, body composition, and psychosocial outcomes. Generalised estimating equations, adjusted for school cluster and potential confounders, were used and A priori subgroup analysis was undertaken. Micro-costing and cost-consequence analyses were conducted using bespoke collection methods on programme delivery information. Outcomes for the cost-consequence analysis were health related quality of life measured by the Child Health Utility-9D and service use. RESULTS: Overall, 1752 pupils participated, 1211 (69.1%) provided valid 14-month accelerometer data. No difference in MVPA (mins/day; 95% confidence intervals) was found at 14 months (1.7; -0.8 to 4.3), there was at seven months (2.4; 0.1 to 4.7). Subgroup analyses showed significant intervention effects on 14-month in larger schools (3.9; 1.39 to 6.09) and in White Europeans (3.1; 0.60 to 6.02) and in early maturers (5.1; 1.69 to 8.48) at seven months. The control group did better in smaller schools at 14-months (-4.38; -7.34 to -1.41). Significant group differences were found in 14-month identified motivation (-0.09; -0.18 to -0.01) and at seven months in: overall PA (1.39 mg/day; 0.1 to 2.2), after-school sedentary time (-4.7; -8.9 to -0.6), whole day (5.7; 1.0 to 10.5) and school day (4.5; 0.25 to 8.75) light PA, self-esteem. Small, statistically significant, differences in some psychosocial variables favoured control schools. Micro-costing demonstrated that delivering the programme resulted in a range of time and financial costs at each school. Cost-consequence analysis demonstrated no effect of the programme for health related quality of life or service use. CONCLUSIONS: Compared with usual practice, ‘Girls Active’ did not affect 14-month MVPA. TRIAL REGISTRATION: ISRCTN10688342