Cargando…
On Kedlaya-type inequalities for weighted means
In 2016 we proved that for every symmetric, repetition invariant and Jensen concave mean [Formula: see text] the Kedlaya-type inequality [Formula: see text] holds for an arbitrary [Formula: see text] ([Formula: see text] stands for the arithmetic mean). We are going to prove the weighted counterpart...
Autores principales: | Páles, Zsolt, Pasteczka, Paweł |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5918800/ https://www.ncbi.nlm.nih.gov/pubmed/29720847 http://dx.doi.org/10.1186/s13660-018-1685-z |
Ejemplares similares
-
Conference on Inequalities and Applications
por: Bandle, Catherine, et al.
Publicado: (2009) -
Weighted arithmetic–geometric operator mean inequalities
por: Xue, Jianming
Publicado: (2018) -
Chebyshev type inequalities by means of copulas
por: Dragomir, Sever S, et al.
Publicado: (2017) -
The blocking technique, weighted mean operators and Hardy’s inequality
por: Grosse-Erdmann, Karl-Goswin
Publicado: (1998) -
Generalizations on Some Hermite-Hadamard Type Inequalities for Differentiable Convex Functions with Applications to Weighted Means
por: Sroysang, Banyat
Publicado: (2014)