Cargando…

Comment on “A new method for treating fecal incontinence by implanting stem cells derived from human adipose tissue: preliminary findings of a randomized double-blind clinical trial”

In the study by Sarveazad et al. adipose tissue-derived stem cells were injected to reinforce anal sphincter repair. The authors came to the conclusion that injection of stem cells during repair surgery for fecal incontinence may cause replacement of fibrous tissue, which may be a key point in treat...

Descripción completa

Detalles Bibliográficos
Autores principales: El-Said, Mohammed Mohammed, Emile, Sameh Hany
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5918915/
https://www.ncbi.nlm.nih.gov/pubmed/29695293
http://dx.doi.org/10.1186/s13287-018-0875-4
Descripción
Sumario:In the study by Sarveazad et al. adipose tissue-derived stem cells were injected to reinforce anal sphincter repair. The authors came to the conclusion that injection of stem cells during repair surgery for fecal incontinence may cause replacement of fibrous tissue, which may be a key point in treatment of fecal incontinence. The authors emphasized in their “Discussion” section that the ability of stem cells to differentiate into muscle fibers, replacing the fibrous tissue at the site of repair, is their main action, which may not be accurate. We think that healing of repaired anal sphincter begins with granulation tissue formation, which then matures into fibrous tissue that becomes infiltrated by muscle fibers from the approximated cut ends of the sphincter, resulting in regain of sphincter muscle continuity. This is supported by many experimental studies that have evaluated local injection of stem cells during sphincteroplasty in rats and shown that the injected stem cells do not differentiate into muscle fibers but may induce healing by a strong fibrous tissue. Further studies are needed to determine the main mechanism of action of mesenchymal stems cells in augmenting anal sphincter repair.