Cargando…
A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery
Appropriate Site Specific Weed Management (SSWM) is crucial to ensure the crop yields. Within SSWM of large-scale area, remote sensing is a key technology to provide accurate weed distribution information. Compared with satellite and piloted aircraft remote sensing, unmanned aerial vehicle (UAV) is...
Autores principales: | Huang, Huasheng, Deng, Jizhong, Lan, Yubin, Yang, Aqing, Deng, Xiaoling, Zhang, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5919481/ https://www.ncbi.nlm.nih.gov/pubmed/29698500 http://dx.doi.org/10.1371/journal.pone.0196302 |
Ejemplares similares
-
Accurate Weed Mapping and Prescription Map Generation Based on Fully Convolutional Networks Using UAV Imagery
por: Huang, Huasheng, et al.
Publicado: (2018) -
A Semantic Labeling Approach for Accurate Weed Mapping of High Resolution UAV Imagery
por: Huang, Huasheng, et al.
Publicado: (2018) -
Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping
por: Borra-Serrano, Irene, et al.
Publicado: (2015) -
Identification and Comprehensive Evaluation of Resistant Weeds Using Unmanned Aerial Vehicle-Based Multispectral Imagery
por: Xia, Fulin, et al.
Publicado: (2022) -
Configuration and Specifications of an Unmanned Aerial Vehicle (UAV) for Early Site Specific Weed Management
por: Torres-Sánchez, Jorge, et al.
Publicado: (2013)