Cargando…
Comparing the performance of meta-classifiers—a case study on selected imbalanced data sets relevant for prediction of liver toxicity
ABSTRACT: Cheminformatics datasets used in classification problems, especially those related to biological or physicochemical properties, are often imbalanced. This presents a major challenge in development of in silico prediction models, as the traditional machine learning algorithms are known to w...
Autores principales: | Jain, Sankalp, Kotsampasakou, Eleni, Ecker, Gerhard F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5919997/ https://www.ncbi.nlm.nih.gov/pubmed/29626291 http://dx.doi.org/10.1007/s10822-018-0116-z |
Ejemplares similares
-
Classifying Extremely Imbalanced Data Sets
por: Britsch, M, et al.
Publicado: (2010) -
Predicting drug-induced liver injury: The importance of data curation
por: Kotsampasakou, Eleni, et al.
Publicado: (2017) -
Predicting Drug-Induced Cholestasis with the Help
of Hepatic Transporters—An in Silico Modeling
Approach
por: Kotsampasakou, Eleni, et al.
Publicado: (2017) -
Curated human hyperbilirubinemia data and the respective OATP1B1 and 1B3 inhibition predictions
por: Kotsampasakou, Eleni, et al.
Publicado: (2017) -
Identification of Novel Inhibitors of Organic Anion
Transporting Polypeptides 1B1 and 1B3 (OATP1B1 and OATP1B3) Using
a Consensus Vote of Six Classification Models
por: Kotsampasakou, Eleni, et al.
Publicado: (2015)