Cargando…

RNA-guided transcriptional silencing in vivo with S. aureus CRISPR-Cas9 repressors

CRISPR-Cas9 transcriptional repressors have emerged as robust tools for disrupting gene regulation in vitro but have not yet been adapted for systemic delivery in adult animal models. Here we describe a Staphylococcus aureus Cas9-based repressor (dSaCas9(KRAB)) compatible with adeno-associated viral...

Descripción completa

Detalles Bibliográficos
Autores principales: Thakore, Pratiksha I., Kwon, Jennifer B., Nelson, Christopher E., Rouse, Douglas C., Gemberling, Matthew P., Oliver, Matthew L., Gersbach, Charles A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5920046/
https://www.ncbi.nlm.nih.gov/pubmed/29700298
http://dx.doi.org/10.1038/s41467-018-04048-4
Descripción
Sumario:CRISPR-Cas9 transcriptional repressors have emerged as robust tools for disrupting gene regulation in vitro but have not yet been adapted for systemic delivery in adult animal models. Here we describe a Staphylococcus aureus Cas9-based repressor (dSaCas9(KRAB)) compatible with adeno-associated viral (AAV) delivery. To evaluate dSaCas9(KRAB) efficacy for gene silencing in vivo, we silenced transcription of Pcsk9, a regulator of cholesterol levels, in the liver of adult mice. Systemic administration of a dual-vector AAV8 system expressing dSaCas9(KRAB) and a Pcsk9-targeting guide RNA (gRNA) results in significant reductions of serum Pcsk9 and cholesterol levels. Despite a moderate host response to dSaCas9(KRAB) expression, Pcsk9 repression is maintained for 24 weeks after a single treatment, demonstrating the potential for long-term gene silencing in post-mitotic tissues with dSaCas9(KRAB). In vivo programmable gene silencing enables studies that link gene regulation to complex phenotypes and expands the CRISPR-Cas9 perturbation toolbox for basic research and gene therapy applications.