Cargando…
Extraction of cage-like sporopollenin exine capsules from dandelion pollen grains
Pollen-based microcapsules such as hollow sporopollenin exine capsules (SECs) have emerged as excellent drug delivery and microencapsulation vehicles. To date, SECs have been extracted primarily from a wide range of natural pollen species possessing largely spherical geometries and uniform surface f...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5920053/ https://www.ncbi.nlm.nih.gov/pubmed/29700313 http://dx.doi.org/10.1038/s41598-018-24336-9 |
_version_ | 1783317754709803008 |
---|---|
author | Fan, Tengfei Park, Jae Hyeon Pham, Quynh Anh Tan, Ee-Lin Mundargi, Raghavendra. C. Potroz, Michael G. Jung, Haram Cho, Nam-Joon |
author_facet | Fan, Tengfei Park, Jae Hyeon Pham, Quynh Anh Tan, Ee-Lin Mundargi, Raghavendra. C. Potroz, Michael G. Jung, Haram Cho, Nam-Joon |
author_sort | Fan, Tengfei |
collection | PubMed |
description | Pollen-based microcapsules such as hollow sporopollenin exine capsules (SECs) have emerged as excellent drug delivery and microencapsulation vehicles. To date, SECs have been extracted primarily from a wide range of natural pollen species possessing largely spherical geometries and uniform surface features. Nonetheless, exploring pollen species with more diverse architectural features could lead to new application possibilities. One promising class of candidates is dandelion pollen grains, which possess architecturally intricate, cage-like microstructures composed of robust sporopollenin biopolymers. Here, we report the successful extraction and macromolecular loading of dandelion SECs. Preservation of SEC morphology and successful removal of proteinaceous materials was evaluated using scanning electron microscopy (SEM), matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry, elemental CHN analysis, dynamic image particle analysis (DIPA) and confocal laser scanning microscopy (CLSM). Among the tested processing schemes, acidolysis using 85% (v/v) phosphoric acid refluxed at 70 °C for 5 hours yielded an optimal balance of intact particle yield, protein removal, and preservation of cage-like microstructure. For proof-of-concept loading, bovine serum albumin (BSA) was encapsulated within the dandelion SECs with high efficiency (32.23 ± 0.33%). Overall, our findings highlight how hollow microcapsules with diverse architectural features can be readily prepared and utilized from plant-based materials. |
format | Online Article Text |
id | pubmed-5920053 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-59200532018-05-01 Extraction of cage-like sporopollenin exine capsules from dandelion pollen grains Fan, Tengfei Park, Jae Hyeon Pham, Quynh Anh Tan, Ee-Lin Mundargi, Raghavendra. C. Potroz, Michael G. Jung, Haram Cho, Nam-Joon Sci Rep Article Pollen-based microcapsules such as hollow sporopollenin exine capsules (SECs) have emerged as excellent drug delivery and microencapsulation vehicles. To date, SECs have been extracted primarily from a wide range of natural pollen species possessing largely spherical geometries and uniform surface features. Nonetheless, exploring pollen species with more diverse architectural features could lead to new application possibilities. One promising class of candidates is dandelion pollen grains, which possess architecturally intricate, cage-like microstructures composed of robust sporopollenin biopolymers. Here, we report the successful extraction and macromolecular loading of dandelion SECs. Preservation of SEC morphology and successful removal of proteinaceous materials was evaluated using scanning electron microscopy (SEM), matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry, elemental CHN analysis, dynamic image particle analysis (DIPA) and confocal laser scanning microscopy (CLSM). Among the tested processing schemes, acidolysis using 85% (v/v) phosphoric acid refluxed at 70 °C for 5 hours yielded an optimal balance of intact particle yield, protein removal, and preservation of cage-like microstructure. For proof-of-concept loading, bovine serum albumin (BSA) was encapsulated within the dandelion SECs with high efficiency (32.23 ± 0.33%). Overall, our findings highlight how hollow microcapsules with diverse architectural features can be readily prepared and utilized from plant-based materials. Nature Publishing Group UK 2018-04-26 /pmc/articles/PMC5920053/ /pubmed/29700313 http://dx.doi.org/10.1038/s41598-018-24336-9 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Fan, Tengfei Park, Jae Hyeon Pham, Quynh Anh Tan, Ee-Lin Mundargi, Raghavendra. C. Potroz, Michael G. Jung, Haram Cho, Nam-Joon Extraction of cage-like sporopollenin exine capsules from dandelion pollen grains |
title | Extraction of cage-like sporopollenin exine capsules from dandelion pollen grains |
title_full | Extraction of cage-like sporopollenin exine capsules from dandelion pollen grains |
title_fullStr | Extraction of cage-like sporopollenin exine capsules from dandelion pollen grains |
title_full_unstemmed | Extraction of cage-like sporopollenin exine capsules from dandelion pollen grains |
title_short | Extraction of cage-like sporopollenin exine capsules from dandelion pollen grains |
title_sort | extraction of cage-like sporopollenin exine capsules from dandelion pollen grains |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5920053/ https://www.ncbi.nlm.nih.gov/pubmed/29700313 http://dx.doi.org/10.1038/s41598-018-24336-9 |
work_keys_str_mv | AT fantengfei extractionofcagelikesporopolleninexinecapsulesfromdandelionpollengrains AT parkjaehyeon extractionofcagelikesporopolleninexinecapsulesfromdandelionpollengrains AT phamquynhanh extractionofcagelikesporopolleninexinecapsulesfromdandelionpollengrains AT taneelin extractionofcagelikesporopolleninexinecapsulesfromdandelionpollengrains AT mundargiraghavendrac extractionofcagelikesporopolleninexinecapsulesfromdandelionpollengrains AT potrozmichaelg extractionofcagelikesporopolleninexinecapsulesfromdandelionpollengrains AT jungharam extractionofcagelikesporopolleninexinecapsulesfromdandelionpollengrains AT chonamjoon extractionofcagelikesporopolleninexinecapsulesfromdandelionpollengrains |