Cargando…
A closer look at cross-validation for assessing the accuracy of gene regulatory networks and models
Cross-validation (CV) is a technique to assess the generalizability of a model to unseen data. This technique relies on assumptions that may not be satisfied when studying genomics datasets. For example, random CV (RCV) assumes that a randomly selected set of samples, the test set, well represents u...
Autores principales: | Tabe-Bordbar, Shayan, Emad, Amin, Zhao, Sihai Dave, Sinha, Saurabh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5920056/ https://www.ncbi.nlm.nih.gov/pubmed/29700343 http://dx.doi.org/10.1038/s41598-018-24937-4 |
Ejemplares similares
-
Integrative modeling of lncRNA-chromatin interaction maps reveals diverse mechanisms of nuclear retention
por: Tabe-Bordbar, Shayan, et al.
Publicado: (2023) -
Kinome Profiling of Regulatory T Cells: A Closer Look into a Complex Intracellular Network
por: Tuettenberg, Andrea, et al.
Publicado: (2016) -
Estimating misclassification error: a closer look at cross-validation based methods
por: Ounpraseuth, Songthip, et al.
Publicado: (2012) -
Inference of phenotype-relevant transcriptional regulatory networks elucidates cancer type-specific regulatory mechanisms in a pan-cancer study
por: Emad, Amin, et al.
Publicado: (2021) -
Relational graph convolutional networks: a closer look
por: Thanapalasingam, Thiviyan, et al.
Publicado: (2022)