Cargando…
Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning
Experimental search for high-temperature ferroelectric perovskites is a challenging task due to the vast chemical space and lack of predictive guidelines. Here, we demonstrate a two-step machine learning approach to guide experiments in search of xBi[Formula: see text] O(3)–(1 − x)PbTiO(3)-based per...
Autores principales: | Balachandran, Prasanna V., Kowalski, Benjamin, Sehirlioglu, Alp, Lookman, Turab |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5920103/ https://www.ncbi.nlm.nih.gov/pubmed/29700297 http://dx.doi.org/10.1038/s41467-018-03821-9 |
Ejemplares similares
-
Accelerated search for materials with targeted properties by adaptive design
por: Xue, Dezhen, et al.
Publicado: (2016) -
Materials Prediction via Classification Learning
por: Balachandran, Prasanna V., et al.
Publicado: (2015) -
Learning from data to design functional materials without inversion symmetry
por: Balachandran, Prasanna V., et al.
Publicado: (2017) -
Adaptive Strategies for Materials Design using Uncertainties
por: Balachandran, Prasanna V., et al.
Publicado: (2016) -
Accelerated Search for BaTiO(3)‐Based Ceramics with Large Energy Storage at Low Fields Using Machine Learning and Experimental Design
por: Yuan, Ruihao, et al.
Publicado: (2019)