Cargando…

Data Reduction Approaches for Dissecting Transcriptional Effects on Metabolism

The availability of high-throughput data from transcriptomics and metabolomics technologies provides the opportunity to characterize the transcriptional effects on metabolism. Here we propose and evaluate two computational approaches rooted in data reduction techniques to identify and categorize tra...

Descripción completa

Detalles Bibliográficos
Autores principales: Schwahn, Kevin, Nikoloski, Zoran
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5920133/
https://www.ncbi.nlm.nih.gov/pubmed/29731765
http://dx.doi.org/10.3389/fpls.2018.00538
Descripción
Sumario:The availability of high-throughput data from transcriptomics and metabolomics technologies provides the opportunity to characterize the transcriptional effects on metabolism. Here we propose and evaluate two computational approaches rooted in data reduction techniques to identify and categorize transcriptional effects on metabolism by combining data on gene expression and metabolite levels. The approaches determine the partial correlation between two metabolite data profiles upon control of given principal components extracted from transcriptomics data profiles. Therefore, they allow us to investigate both data types with all features simultaneously without doing preselection of genes. The proposed approaches allow us to categorize the relation between pairs of metabolites as being under transcriptional or post-transcriptional regulation. The resulting classification is compared to existing literature and accumulated evidence about regulatory mechanism of reactions and pathways in the cases of Escherichia coli, Saccharomycies cerevisiae, and Arabidopsis thaliana.