Cargando…
Downregulation of TACC3 inhibits tumor growth and migration in osteosarcoma cells through regulation of the NF-κB signaling pathway
TACC3, a member of the transforming acidic coiled-coil protein (TACC) family, is a multifunctional protein that is involved in various biological functions, including proliferation and differentiation of tumor cells, cancer progression and metastasis. The aims of the present study were to examine wh...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5920203/ https://www.ncbi.nlm.nih.gov/pubmed/29725420 http://dx.doi.org/10.3892/ol.2018.8262 |
_version_ | 1783317789268770816 |
---|---|
author | Zhao, Congran He, Xiaofeng Li, Heng Zhou, Jihui Han, Xiuying Wang, Dongjun Tian, Guofeng Sui, Fuge |
author_facet | Zhao, Congran He, Xiaofeng Li, Heng Zhou, Jihui Han, Xiuying Wang, Dongjun Tian, Guofeng Sui, Fuge |
author_sort | Zhao, Congran |
collection | PubMed |
description | TACC3, a member of the transforming acidic coiled-coil protein (TACC) family, is a multifunctional protein that is involved in various biological functions, including proliferation and differentiation of tumor cells, cancer progression and metastasis. The aims of the present study were to examine whether TACC3 expression is associated with the proliferation and migration of osteosarcoma (OS) cells and to investigate the potential underlying molecular mechanisms of TACC3 in OS. First, the levels of mRNA and protein expression in OS cell lines by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively were examined. Second, the effects of TACC3 knockdown and overexpression on the proliferative, migratory and invasive capacities of OS cells were investigated. Finally, western blot analysis was employed to detect the potential mechanism of TACC3 in osteosarcoma. TACC3 expression was significantly increased in osteosarcoma tissues and cell lines, compared to matched controls. The knockdown of TACC3 was able to significantly inhibit the proliferation, migration and invasion of osteosarcoma cells, whereas the overexpression of TACC3 was able to promote cell proliferation and migration. Mechanistically, TACC3 may promote the migration and invasion of osteosarcoma cells via through nuclear factor-κB signaling. These data suggest that TACC3 has an important part in the progression of osteosarcoma and may serve as a potential target for gene therapy. |
format | Online Article Text |
id | pubmed-5920203 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-59202032018-05-03 Downregulation of TACC3 inhibits tumor growth and migration in osteosarcoma cells through regulation of the NF-κB signaling pathway Zhao, Congran He, Xiaofeng Li, Heng Zhou, Jihui Han, Xiuying Wang, Dongjun Tian, Guofeng Sui, Fuge Oncol Lett Articles TACC3, a member of the transforming acidic coiled-coil protein (TACC) family, is a multifunctional protein that is involved in various biological functions, including proliferation and differentiation of tumor cells, cancer progression and metastasis. The aims of the present study were to examine whether TACC3 expression is associated with the proliferation and migration of osteosarcoma (OS) cells and to investigate the potential underlying molecular mechanisms of TACC3 in OS. First, the levels of mRNA and protein expression in OS cell lines by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively were examined. Second, the effects of TACC3 knockdown and overexpression on the proliferative, migratory and invasive capacities of OS cells were investigated. Finally, western blot analysis was employed to detect the potential mechanism of TACC3 in osteosarcoma. TACC3 expression was significantly increased in osteosarcoma tissues and cell lines, compared to matched controls. The knockdown of TACC3 was able to significantly inhibit the proliferation, migration and invasion of osteosarcoma cells, whereas the overexpression of TACC3 was able to promote cell proliferation and migration. Mechanistically, TACC3 may promote the migration and invasion of osteosarcoma cells via through nuclear factor-κB signaling. These data suggest that TACC3 has an important part in the progression of osteosarcoma and may serve as a potential target for gene therapy. D.A. Spandidos 2018-05 2018-03-14 /pmc/articles/PMC5920203/ /pubmed/29725420 http://dx.doi.org/10.3892/ol.2018.8262 Text en Copyright: © Zhao et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Articles Zhao, Congran He, Xiaofeng Li, Heng Zhou, Jihui Han, Xiuying Wang, Dongjun Tian, Guofeng Sui, Fuge Downregulation of TACC3 inhibits tumor growth and migration in osteosarcoma cells through regulation of the NF-κB signaling pathway |
title | Downregulation of TACC3 inhibits tumor growth and migration in osteosarcoma cells through regulation of the NF-κB signaling pathway |
title_full | Downregulation of TACC3 inhibits tumor growth and migration in osteosarcoma cells through regulation of the NF-κB signaling pathway |
title_fullStr | Downregulation of TACC3 inhibits tumor growth and migration in osteosarcoma cells through regulation of the NF-κB signaling pathway |
title_full_unstemmed | Downregulation of TACC3 inhibits tumor growth and migration in osteosarcoma cells through regulation of the NF-κB signaling pathway |
title_short | Downregulation of TACC3 inhibits tumor growth and migration in osteosarcoma cells through regulation of the NF-κB signaling pathway |
title_sort | downregulation of tacc3 inhibits tumor growth and migration in osteosarcoma cells through regulation of the nf-κb signaling pathway |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5920203/ https://www.ncbi.nlm.nih.gov/pubmed/29725420 http://dx.doi.org/10.3892/ol.2018.8262 |
work_keys_str_mv | AT zhaocongran downregulationoftacc3inhibitstumorgrowthandmigrationinosteosarcomacellsthroughregulationofthenfkbsignalingpathway AT hexiaofeng downregulationoftacc3inhibitstumorgrowthandmigrationinosteosarcomacellsthroughregulationofthenfkbsignalingpathway AT liheng downregulationoftacc3inhibitstumorgrowthandmigrationinosteosarcomacellsthroughregulationofthenfkbsignalingpathway AT zhoujihui downregulationoftacc3inhibitstumorgrowthandmigrationinosteosarcomacellsthroughregulationofthenfkbsignalingpathway AT hanxiuying downregulationoftacc3inhibitstumorgrowthandmigrationinosteosarcomacellsthroughregulationofthenfkbsignalingpathway AT wangdongjun downregulationoftacc3inhibitstumorgrowthandmigrationinosteosarcomacellsthroughregulationofthenfkbsignalingpathway AT tianguofeng downregulationoftacc3inhibitstumorgrowthandmigrationinosteosarcomacellsthroughregulationofthenfkbsignalingpathway AT suifuge downregulationoftacc3inhibitstumorgrowthandmigrationinosteosarcomacellsthroughregulationofthenfkbsignalingpathway |