Cargando…
An interspecific barberry hybrid enables genetic dissection of non-host resistance to the stem rust pathogen Puccinia graminis
Stem rust, caused by Puccinia graminis (Pg), remains a devastating disease of wheat, and the emergence of new Pg races virulent on deployed resistance genes fuels the ongoing search for sources of durable resistance. Despite its intrinsic durability, non-host resistance (NHR) is largely unexplored a...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5920301/ https://www.ncbi.nlm.nih.gov/pubmed/29529250 http://dx.doi.org/10.1093/jxb/ery066 |
_version_ | 1783317805740851200 |
---|---|
author | Bartaula, Radhika Melo, Arthur T O Connolly, Bryan A Jin, Yue Hale, Iago |
author_facet | Bartaula, Radhika Melo, Arthur T O Connolly, Bryan A Jin, Yue Hale, Iago |
author_sort | Bartaula, Radhika |
collection | PubMed |
description | Stem rust, caused by Puccinia graminis (Pg), remains a devastating disease of wheat, and the emergence of new Pg races virulent on deployed resistance genes fuels the ongoing search for sources of durable resistance. Despite its intrinsic durability, non-host resistance (NHR) is largely unexplored as a protection strategy against Pg, partly due to the inherent challenge of developing a genetically tractable system within which NHR segregates. Here, we demonstrate that Pg’s far less studied ancestral host, barberry (Berberis spp.), provides such a unique pathosystem. Characterization of a natural population of B. ×ottawensis, an interspecific hybrid of Pg-susceptible B. vulgaris and Pg-resistant B. thunbergii (Bt), reveals that this uncommon nothospecies can be used to dissect the genetic mechanism(s) of Pg-NHR exhibited by Bt. Artificial inoculation of a natural population of B. ×ottawensis accessions, verified via genotyping by sequencing to be first-generation hybrids, revealed 51% susceptible, 33% resistant, and 16% intermediate phenotypes. Characterization of a B. ×ottawensis full sib family excluded the possibility of maternal inheritance of the resistance. By demonstrating segregation of Pg-NHR in a hybrid population, this study challenges the assumed irrelevance of Bt to Pg epidemiology and lays a novel foundation for the genetic dissection of NHR to one of agriculture’s most studied pathogens. |
format | Online Article Text |
id | pubmed-5920301 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-59203012018-05-04 An interspecific barberry hybrid enables genetic dissection of non-host resistance to the stem rust pathogen Puccinia graminis Bartaula, Radhika Melo, Arthur T O Connolly, Bryan A Jin, Yue Hale, Iago J Exp Bot Research Papers Stem rust, caused by Puccinia graminis (Pg), remains a devastating disease of wheat, and the emergence of new Pg races virulent on deployed resistance genes fuels the ongoing search for sources of durable resistance. Despite its intrinsic durability, non-host resistance (NHR) is largely unexplored as a protection strategy against Pg, partly due to the inherent challenge of developing a genetically tractable system within which NHR segregates. Here, we demonstrate that Pg’s far less studied ancestral host, barberry (Berberis spp.), provides such a unique pathosystem. Characterization of a natural population of B. ×ottawensis, an interspecific hybrid of Pg-susceptible B. vulgaris and Pg-resistant B. thunbergii (Bt), reveals that this uncommon nothospecies can be used to dissect the genetic mechanism(s) of Pg-NHR exhibited by Bt. Artificial inoculation of a natural population of B. ×ottawensis accessions, verified via genotyping by sequencing to be first-generation hybrids, revealed 51% susceptible, 33% resistant, and 16% intermediate phenotypes. Characterization of a B. ×ottawensis full sib family excluded the possibility of maternal inheritance of the resistance. By demonstrating segregation of Pg-NHR in a hybrid population, this study challenges the assumed irrelevance of Bt to Pg epidemiology and lays a novel foundation for the genetic dissection of NHR to one of agriculture’s most studied pathogens. Oxford University Press 2018-04-27 2018-02-26 /pmc/articles/PMC5920301/ /pubmed/29529250 http://dx.doi.org/10.1093/jxb/ery066 Text en © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Experimental Biology. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Papers Bartaula, Radhika Melo, Arthur T O Connolly, Bryan A Jin, Yue Hale, Iago An interspecific barberry hybrid enables genetic dissection of non-host resistance to the stem rust pathogen Puccinia graminis |
title | An interspecific barberry hybrid enables genetic dissection of non-host resistance to the stem rust pathogen Puccinia graminis |
title_full | An interspecific barberry hybrid enables genetic dissection of non-host resistance to the stem rust pathogen Puccinia graminis |
title_fullStr | An interspecific barberry hybrid enables genetic dissection of non-host resistance to the stem rust pathogen Puccinia graminis |
title_full_unstemmed | An interspecific barberry hybrid enables genetic dissection of non-host resistance to the stem rust pathogen Puccinia graminis |
title_short | An interspecific barberry hybrid enables genetic dissection of non-host resistance to the stem rust pathogen Puccinia graminis |
title_sort | interspecific barberry hybrid enables genetic dissection of non-host resistance to the stem rust pathogen puccinia graminis |
topic | Research Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5920301/ https://www.ncbi.nlm.nih.gov/pubmed/29529250 http://dx.doi.org/10.1093/jxb/ery066 |
work_keys_str_mv | AT bartaularadhika aninterspecificbarberryhybridenablesgeneticdissectionofnonhostresistancetothestemrustpathogenpucciniagraminis AT meloarthurto aninterspecificbarberryhybridenablesgeneticdissectionofnonhostresistancetothestemrustpathogenpucciniagraminis AT connollybryana aninterspecificbarberryhybridenablesgeneticdissectionofnonhostresistancetothestemrustpathogenpucciniagraminis AT jinyue aninterspecificbarberryhybridenablesgeneticdissectionofnonhostresistancetothestemrustpathogenpucciniagraminis AT haleiago aninterspecificbarberryhybridenablesgeneticdissectionofnonhostresistancetothestemrustpathogenpucciniagraminis AT bartaularadhika interspecificbarberryhybridenablesgeneticdissectionofnonhostresistancetothestemrustpathogenpucciniagraminis AT meloarthurto interspecificbarberryhybridenablesgeneticdissectionofnonhostresistancetothestemrustpathogenpucciniagraminis AT connollybryana interspecificbarberryhybridenablesgeneticdissectionofnonhostresistancetothestemrustpathogenpucciniagraminis AT jinyue interspecificbarberryhybridenablesgeneticdissectionofnonhostresistancetothestemrustpathogenpucciniagraminis AT haleiago interspecificbarberryhybridenablesgeneticdissectionofnonhostresistancetothestemrustpathogenpucciniagraminis |