Cargando…

An imbalanced parental genome ratio affects the development of rice zygotes

Upon double fertilization, one sperm cell fuses with the egg cell to form a zygote with a 1:1 maternal-to-paternal genome ratio (1m:1p), and another sperm cell fuses with the central cell to form a triploid primary endosperm cell with a 2m:1p ratio, resulting in formation of the embryo and the endos...

Descripción completa

Detalles Bibliográficos
Autores principales: Toda, Erika, Ohnishi, Yukinosuke, Okamoto, Takashi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5920335/
https://www.ncbi.nlm.nih.gov/pubmed/29538694
http://dx.doi.org/10.1093/jxb/ery094
Descripción
Sumario:Upon double fertilization, one sperm cell fuses with the egg cell to form a zygote with a 1:1 maternal-to-paternal genome ratio (1m:1p), and another sperm cell fuses with the central cell to form a triploid primary endosperm cell with a 2m:1p ratio, resulting in formation of the embryo and the endosperm, respectively. The endosperm is known to be considerably sensitive to the ratio of the parental genomes. However, the effect of an imbalance of the parental genomes on zygotic development and embryogenesis has not been well studied, because it is difficult to reproduce the parental genome-imbalanced situation in zygotes and to monitor the developmental profile of zygotes without external effects from the endosperm. In this study, we produced polyploid zygotes with an imbalanced parental genome ratio by electro-fusion of isolated rice gametes and observed their developmental profiles. Polyploid zygotes with an excess maternal gamete/genome developed normally, whereas approximately half to three-quarters of polyploid zygotes with a paternal excess showed developmental arrests. These results indicate that paternal and maternal genomes synergistically serve zygote development with distinct functions, and that genes with monoallelic expression play important roles during zygotic development and embryogenesis.