Cargando…
An efficient approach for feature construction of high-dimensional microarray data by random projections
Dimensionality reduction of microarray data is a very challenging task due to high computational time and the large amount of memory required to train and test a model. Genetic programming (GP) is a stochastic approach to solving a problem. For high dimensional datasets, GP does not perform as well...
Autores principales: | Tariq, Hassan, Eldridge, Elf, Welch, Ian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5922581/ https://www.ncbi.nlm.nih.gov/pubmed/29702670 http://dx.doi.org/10.1371/journal.pone.0196385 |
Ejemplares similares
-
Feature Selection for high Dimensional DNA Microarray data using hybrid approaches
por: Kumar, Ammu Prasanna, et al.
Publicado: (2013) -
Random Projection for Fast and Efficient Multivariate Correlation Analysis of High-Dimensional Data: A New Approach
por: Grellmann, Claudia, et al.
Publicado: (2016) -
Efficient feature selection and classification for microarray data
por: Li, Zifa, et al.
Publicado: (2018) -
An Efficient Cancer Classification Model Using Microarray and High-Dimensional Data
por: Fathi, Hanaa, et al.
Publicado: (2021) -
Approaches to working in high-dimensional data spaces: gene expression microarrays
por: Wang, Y, et al.
Publicado: (2008)