Cargando…
Uses of selection strategies in both spectral and sample spaces for classifying hard and soft blueberry using near infrared data
In the current work, we attempt to leverage the fewer wavelengths and samples to develop a classification model for classifying hard and soft blueberries using near infrared (NIR) data. To do this, random frog selection and active learning approaches are used in the spectral space and the sample que...
Autores principales: | Hu, Menghan, Zhai, Guangtao, Zhao, Yu, Wang, Zhaodi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5923227/ https://www.ncbi.nlm.nih.gov/pubmed/29703949 http://dx.doi.org/10.1038/s41598-018-25055-x |
Ejemplares similares
-
Application of Deep Learning Architectures for Accurate and Rapid Detection of Internal Mechanical Damage of Blueberry Using Hyperspectral Transmittance Data
por: Wang, Zhaodi, et al.
Publicado: (2018) -
Active Learning Plus Deep Learning Can Establish Cost-Effective and Robust Model for Multichannel Image: A Case on Hyperspectral Image Classification
por: Shi, Fangyu, et al.
Publicado: (2020) -
Nondestructive Detection and Quantification of Blueberry Bruising using Near-infrared (NIR) Hyperspectral Reflectance Imaging
por: Jiang, Yu, et al.
Publicado: (2016) -
Combination of near-infrared and thermal imaging techniques for the remote and simultaneous measurements of breathing and heart rates under sleep situation
por: Hu, Menghan, et al.
Publicado: (2018) -
Integrated near-infrared spectral sensing
por: Hakkel, Kaylee D., et al.
Publicado: (2022)