Cargando…

Long non-coding RNAs involved in the regulatory network during porcine pre-implantation embryonic development and iPSC induction

Long non-coding RNAs (lncRNA) play a key role in the orchestration of transcriptional regulation during development and many other cellular processes. The importance of the regulatory co-expression network was highlighted in the identification of the mechanism of these processes in humans and mice....

Descripción completa

Detalles Bibliográficos
Autores principales: Zhong, Liang, Mu, Haiyuan, Wen, Bingqiang, Zhang, Wei, Wei, Qingqing, Gao, Ge, Han, Jianyong, Cao, Suying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5923264/
https://www.ncbi.nlm.nih.gov/pubmed/29703926
http://dx.doi.org/10.1038/s41598-018-24863-5
Descripción
Sumario:Long non-coding RNAs (lncRNA) play a key role in the orchestration of transcriptional regulation during development and many other cellular processes. The importance of the regulatory co-expression network was highlighted in the identification of the mechanism of these processes in humans and mice. However, elucidation of the properties of porcine lncRNAs involved in the regulatory network during pre-implantation embryonic development and fibroblast reprogramming to induced pluripotent stem cell (iPSC) has been limited to date. Using a weighted gene co-expression network analysis, we constructed the regulatory network and determined that the novel lncRNAs were functionally involved in key events of embryonic development during the pre-implantation period; moreover, reprogramming could be delineated by a small number of potentially functional modules of co-expressed genes. These findings indicate that lncRNAs may be involved in the transcriptional regulation of zygotic genome activation, first lineage segregation and somatic reprogramming to pluripotency. Furthermore, we performed a conservation and synteny analysis with the significant lncRNAs involved in these vital events and validated the results via experimental assays. In summary, the current findings provide a valuable resource to dissect the protein coding gene and lncRNA regulatory networks that underlie the progressive development of embryos and somatic reprogramming.