Cargando…
An Investigation of Influencing Factors on Practical Sub-Diffraction-Limit Focusing of Planar Super-Oscillation Lenses
Planar super-oscillation lenses (SOLs) can fulfill super-resolution focusing and nanoscopic imaging in the far field without the contribution of evanescent waves. Nevertheless, the existing deviations between the design and experimental results have been seldomly investigated, leaving the practical...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5923515/ https://www.ncbi.nlm.nih.gov/pubmed/29565309 http://dx.doi.org/10.3390/nano8040185 |
Sumario: | Planar super-oscillation lenses (SOLs) can fulfill super-resolution focusing and nanoscopic imaging in the far field without the contribution of evanescent waves. Nevertheless, the existing deviations between the design and experimental results have been seldomly investigated, leaving the practical applications of SOLs unpredictable and uncontrollable. In this paper, some application-oriented issues are taken into consideration, such as the inevitable fabrication errors and the size effect of the designed SOLs, with the aim of providing an engineering reference to elaborately customize the demanded focusing light field. It turned out that a thicker structural film makes the focal spots enlarged, while the sloped sidewalls just weaken the intensity of the focal hotspot. Furthermore, the focal lengths are diminished with the decrease of device size, while the focal spots are enlarged. This research will promote the wide-spread applications of SOLs for sub-diffraction-limit far-field focusing in the areas of nanoscopy and high-density optical storage. |
---|