Cargando…
Luminescence Mechanism of Carbon Dots by Tailoring Functional Groups for Sensing Fe(3+) Ions
In this paper, spherical carbon dots (CDs) with distinct compositions and surface states have been successfully synthesized by a facile microwave method. From the fluorescence spectra, several characteristic luminescence features have been observed: surface amino groups are dominant in the whole emi...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5923563/ https://www.ncbi.nlm.nih.gov/pubmed/29649110 http://dx.doi.org/10.3390/nano8040233 |
_version_ | 1783318371674095616 |
---|---|
author | Yu, Jingjing Liu, Chang Yuan, Kang Lu, Zunming Cheng, Yahui Li, Lanlan Zhang, Xinghua Jin, Peng Meng, Fanbin Liu, Hui |
author_facet | Yu, Jingjing Liu, Chang Yuan, Kang Lu, Zunming Cheng, Yahui Li, Lanlan Zhang, Xinghua Jin, Peng Meng, Fanbin Liu, Hui |
author_sort | Yu, Jingjing |
collection | PubMed |
description | In this paper, spherical carbon dots (CDs) with distinct compositions and surface states have been successfully synthesized by a facile microwave method. From the fluorescence spectra, several characteristic luminescence features have been observed: surface amino groups are dominant in the whole emission spectra centering at 445 nm, and the fingerprint emissions relevant to the impurity levels formed by some groups related to C and N elements, including C-C/C=C (intrinsic C), C-N (graphitic N), N-containing heterocycles (pyridine N) and C=O groups, are located around 305 nm, 355 nm, 410 nm, and 500 nm, respectively. Those fine luminescence features could be ascribed to the electron transition among various trapping states within the band structure caused by different chemical bonds in carbon cores, or functional groups attached to the CDs’ surfaces. According to the theoretical calculations and experimental results, a scheme of the band structure has been proposed to describe the positions of those trapping states within the band gap. Additionally, it has also been observed that the emission of CDs is sensitive to the concentration of Fe(3+) ions with a linear relation in the range of Fe(3+) concentration from 12.5 to 250 μM. |
format | Online Article Text |
id | pubmed-5923563 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-59235632018-05-03 Luminescence Mechanism of Carbon Dots by Tailoring Functional Groups for Sensing Fe(3+) Ions Yu, Jingjing Liu, Chang Yuan, Kang Lu, Zunming Cheng, Yahui Li, Lanlan Zhang, Xinghua Jin, Peng Meng, Fanbin Liu, Hui Nanomaterials (Basel) Article In this paper, spherical carbon dots (CDs) with distinct compositions and surface states have been successfully synthesized by a facile microwave method. From the fluorescence spectra, several characteristic luminescence features have been observed: surface amino groups are dominant in the whole emission spectra centering at 445 nm, and the fingerprint emissions relevant to the impurity levels formed by some groups related to C and N elements, including C-C/C=C (intrinsic C), C-N (graphitic N), N-containing heterocycles (pyridine N) and C=O groups, are located around 305 nm, 355 nm, 410 nm, and 500 nm, respectively. Those fine luminescence features could be ascribed to the electron transition among various trapping states within the band structure caused by different chemical bonds in carbon cores, or functional groups attached to the CDs’ surfaces. According to the theoretical calculations and experimental results, a scheme of the band structure has been proposed to describe the positions of those trapping states within the band gap. Additionally, it has also been observed that the emission of CDs is sensitive to the concentration of Fe(3+) ions with a linear relation in the range of Fe(3+) concentration from 12.5 to 250 μM. MDPI 2018-04-12 /pmc/articles/PMC5923563/ /pubmed/29649110 http://dx.doi.org/10.3390/nano8040233 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yu, Jingjing Liu, Chang Yuan, Kang Lu, Zunming Cheng, Yahui Li, Lanlan Zhang, Xinghua Jin, Peng Meng, Fanbin Liu, Hui Luminescence Mechanism of Carbon Dots by Tailoring Functional Groups for Sensing Fe(3+) Ions |
title | Luminescence Mechanism of Carbon Dots by Tailoring Functional Groups for Sensing Fe(3+) Ions |
title_full | Luminescence Mechanism of Carbon Dots by Tailoring Functional Groups for Sensing Fe(3+) Ions |
title_fullStr | Luminescence Mechanism of Carbon Dots by Tailoring Functional Groups for Sensing Fe(3+) Ions |
title_full_unstemmed | Luminescence Mechanism of Carbon Dots by Tailoring Functional Groups for Sensing Fe(3+) Ions |
title_short | Luminescence Mechanism of Carbon Dots by Tailoring Functional Groups for Sensing Fe(3+) Ions |
title_sort | luminescence mechanism of carbon dots by tailoring functional groups for sensing fe(3+) ions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5923563/ https://www.ncbi.nlm.nih.gov/pubmed/29649110 http://dx.doi.org/10.3390/nano8040233 |
work_keys_str_mv | AT yujingjing luminescencemechanismofcarbondotsbytailoringfunctionalgroupsforsensingfe3ions AT liuchang luminescencemechanismofcarbondotsbytailoringfunctionalgroupsforsensingfe3ions AT yuankang luminescencemechanismofcarbondotsbytailoringfunctionalgroupsforsensingfe3ions AT luzunming luminescencemechanismofcarbondotsbytailoringfunctionalgroupsforsensingfe3ions AT chengyahui luminescencemechanismofcarbondotsbytailoringfunctionalgroupsforsensingfe3ions AT lilanlan luminescencemechanismofcarbondotsbytailoringfunctionalgroupsforsensingfe3ions AT zhangxinghua luminescencemechanismofcarbondotsbytailoringfunctionalgroupsforsensingfe3ions AT jinpeng luminescencemechanismofcarbondotsbytailoringfunctionalgroupsforsensingfe3ions AT mengfanbin luminescencemechanismofcarbondotsbytailoringfunctionalgroupsforsensingfe3ions AT liuhui luminescencemechanismofcarbondotsbytailoringfunctionalgroupsforsensingfe3ions |