Cargando…
Esophageal 3D Culture Systems as Modeling Tools in Esophageal Epithelial Pathobiology and Personalized Medicine
The stratified squamous epithelium of the esophagus shows a proliferative basal layer of keratinocytes that undergo terminal differentiation in overlying suprabasal layers. Esophageal pathologies, including eosinophilic esophagitis, gastroesophageal reflux disease, Barrett's esophagus, squamous...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5924738/ https://www.ncbi.nlm.nih.gov/pubmed/29713660 http://dx.doi.org/10.1016/j.jcmgh.2018.01.011 |
_version_ | 1783318583925800960 |
---|---|
author | Whelan, Kelly A. Muir, Amanda B. Nakagawa, Hiroshi |
author_facet | Whelan, Kelly A. Muir, Amanda B. Nakagawa, Hiroshi |
author_sort | Whelan, Kelly A. |
collection | PubMed |
description | The stratified squamous epithelium of the esophagus shows a proliferative basal layer of keratinocytes that undergo terminal differentiation in overlying suprabasal layers. Esophageal pathologies, including eosinophilic esophagitis, gastroesophageal reflux disease, Barrett's esophagus, squamous cell carcinoma, and adenocarcinoma, cause perturbations in the esophageal epithelial proliferation-differentiation gradient. Three-dimensional (3D) culture platforms mimicking in vivo esophageal epithelial tissue architecture ex vivo have emerged as powerful experimental tools for the investigation of esophageal biology in the context of homeostasis and pathology. Herein, we describe types of 3D culture that are used to model the esophagus, including organotypic, organoid, and spheroid culture systems. We discuss the development and optimization of various esophageal 3D culture models; highlight the applications, strengths, and limitations of each method; and summarize how these models have been used to evaluate the esophagus under homeostatic conditions as well as under the duress of inflammation and precancerous/cancerous conditions. Finally, we present future perspectives regarding the use of esophageal 3D models in basic science research as well as translational studies with the potential for personalized medicine. |
format | Online Article Text |
id | pubmed-5924738 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-59247382018-04-30 Esophageal 3D Culture Systems as Modeling Tools in Esophageal Epithelial Pathobiology and Personalized Medicine Whelan, Kelly A. Muir, Amanda B. Nakagawa, Hiroshi Cell Mol Gastroenterol Hepatol Review The stratified squamous epithelium of the esophagus shows a proliferative basal layer of keratinocytes that undergo terminal differentiation in overlying suprabasal layers. Esophageal pathologies, including eosinophilic esophagitis, gastroesophageal reflux disease, Barrett's esophagus, squamous cell carcinoma, and adenocarcinoma, cause perturbations in the esophageal epithelial proliferation-differentiation gradient. Three-dimensional (3D) culture platforms mimicking in vivo esophageal epithelial tissue architecture ex vivo have emerged as powerful experimental tools for the investigation of esophageal biology in the context of homeostasis and pathology. Herein, we describe types of 3D culture that are used to model the esophagus, including organotypic, organoid, and spheroid culture systems. We discuss the development and optimization of various esophageal 3D culture models; highlight the applications, strengths, and limitations of each method; and summarize how these models have been used to evaluate the esophagus under homeostatic conditions as well as under the duress of inflammation and precancerous/cancerous conditions. Finally, we present future perspectives regarding the use of esophageal 3D models in basic science research as well as translational studies with the potential for personalized medicine. Elsevier 2018-01-31 /pmc/articles/PMC5924738/ /pubmed/29713660 http://dx.doi.org/10.1016/j.jcmgh.2018.01.011 Text en © 2018 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Review Whelan, Kelly A. Muir, Amanda B. Nakagawa, Hiroshi Esophageal 3D Culture Systems as Modeling Tools in Esophageal Epithelial Pathobiology and Personalized Medicine |
title | Esophageal 3D Culture Systems as Modeling Tools in Esophageal Epithelial Pathobiology and Personalized Medicine |
title_full | Esophageal 3D Culture Systems as Modeling Tools in Esophageal Epithelial Pathobiology and Personalized Medicine |
title_fullStr | Esophageal 3D Culture Systems as Modeling Tools in Esophageal Epithelial Pathobiology and Personalized Medicine |
title_full_unstemmed | Esophageal 3D Culture Systems as Modeling Tools in Esophageal Epithelial Pathobiology and Personalized Medicine |
title_short | Esophageal 3D Culture Systems as Modeling Tools in Esophageal Epithelial Pathobiology and Personalized Medicine |
title_sort | esophageal 3d culture systems as modeling tools in esophageal epithelial pathobiology and personalized medicine |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5924738/ https://www.ncbi.nlm.nih.gov/pubmed/29713660 http://dx.doi.org/10.1016/j.jcmgh.2018.01.011 |
work_keys_str_mv | AT whelankellya esophageal3dculturesystemsasmodelingtoolsinesophagealepithelialpathobiologyandpersonalizedmedicine AT muiramandab esophageal3dculturesystemsasmodelingtoolsinesophagealepithelialpathobiologyandpersonalizedmedicine AT nakagawahiroshi esophageal3dculturesystemsasmodelingtoolsinesophagealepithelialpathobiologyandpersonalizedmedicine |