Cargando…

Heme Oxygenase-2 Localizes to Mitochondria and Regulates Hypoxic Responses in Hepatocytes

Hypoxia occurs as a part of multiple disease states, including hemorrhagic shock. Adaptive responses occur within the cell to limit the consequences of hypoxia. This includes changes in mitochondrial respiration, stress-induced cell signaling, and gene expression that is regulated by hypoxia inducib...

Descripción completa

Detalles Bibliográficos
Autores principales: Waltz, Paul K., Kautza, Benjamin, Luciano, Jason, Dyer, Mitch, Stolz, Donna Beer, Loughran, Patricia, Neal, Matthew D., Sperry, Jason L., Rosengart, Matthew R., Zuckerbraun, Brian S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5925001/
https://www.ncbi.nlm.nih.gov/pubmed/29849867
http://dx.doi.org/10.1155/2018/2021645
Descripción
Sumario:Hypoxia occurs as a part of multiple disease states, including hemorrhagic shock. Adaptive responses occur within the cell to limit the consequences of hypoxia. This includes changes in mitochondrial respiration, stress-induced cell signaling, and gene expression that is regulated by hypoxia inducible factor-1α (HIF-1α). Heme oxygenase-2 (HO-2) has been shown to be involved in oxygen sensing in several cell types. The purpose of these experiments was to test the hypothesis that HO-2 is a critical regulator of mitochondrial oxygen consumption and reactive oxygen species (ROS) production to influence hypoxia-adaptive responses such as HIF-1α protein levels and JNK signaling. Methods and Results. In vitro studies were performed in primary mouse hepatocytes. HO-2, but not HO-1, was expressed in mitochondria at baseline. Decreased oxygen consumption and increased mitochondrial ROS production in response to hypoxia were dependent upon HO-2 expression. HO-2 expression regulated HIF-1α and JNK signaling in a mitochondrial ROS-dependent manner. Furthermore, knockdown of HO-2 led to increased organ damage, systemic inflammation, tissue hypoxia, and shock in a murine model of hemorrhage and resuscitation. Conclusion. HO-2 signaling plays a role in hypoxic signaling and hemorrhagic shock. This pathway may be able to be harnessed for therapeutic effects.