Cargando…
Exenatide Delays the Progression of Nonalcoholic Fatty Liver Disease in C57BL/6 Mice, Which May Involve Inhibition of the NLRP3 Inflammasome through the Mitophagy Pathway
OBJECTIVE: This study is aimed at investigating whether exenatide (Exe) delays the progression of nonalcoholic fatty liver disease (NAFLD) in C57BL/6 mice by targeting the NLRP3 inflammasome through the autophagy/mitophagy pathway. METHODS: Thirty male C57BL/6 mice were randomly divided into three g...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5925008/ https://www.ncbi.nlm.nih.gov/pubmed/29849583 http://dx.doi.org/10.1155/2018/1864307 |
_version_ | 1783318628219748352 |
---|---|
author | Shao, Ning Yu, Xin-Yang Ma, Xue-Fei Lin, Wen-Jian Hao, Ming Kuang, Hong-Yu |
author_facet | Shao, Ning Yu, Xin-Yang Ma, Xue-Fei Lin, Wen-Jian Hao, Ming Kuang, Hong-Yu |
author_sort | Shao, Ning |
collection | PubMed |
description | OBJECTIVE: This study is aimed at investigating whether exenatide (Exe) delays the progression of nonalcoholic fatty liver disease (NAFLD) in C57BL/6 mice by targeting the NLRP3 inflammasome through the autophagy/mitophagy pathway. METHODS: Thirty male C57BL/6 mice were randomly divided into three groups: control group (n = 10), model group (n = 10), and Exe (exenatide) group (n = 10). Mouse models of NAFLD and diabetes were established using a high-fat diet and streptozocin. RESULTS: The levels of fasting blood glucose (FBG), total cholesterol (TC), and triglyceride (TG) in the serum were significantly reduced after Exe treatment. The body weight, liver weight/body weight, and number of lipid droplets in the liver significantly decreased in Exe-treated mice. Treatment with Exe markedly reduced the levels of liver lipids, malondialdehyde (MDA), and alanine aminotransferase (ALT) in serum and livers. The number of autophagosomes increased significantly in the Exe group. The expression of LC3A/B-II/I, Beclin-1, Parkin, and BNIP3L increased significantly, whereas NLRP3 and IL-1β proteins were suppressed after Exe treatment. CONCLUSION: We successfully established a mouse model of NAFLD and diabetes. Exe may reduce oxidative stress injury and inhibit the NLRP3 inflammasome by enhancing the autophagy/mitophagy pathway in liver, which has a protective effect on the liver in NAFLD and diabetes in C57BL/6 mice. |
format | Online Article Text |
id | pubmed-5925008 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-59250082018-05-30 Exenatide Delays the Progression of Nonalcoholic Fatty Liver Disease in C57BL/6 Mice, Which May Involve Inhibition of the NLRP3 Inflammasome through the Mitophagy Pathway Shao, Ning Yu, Xin-Yang Ma, Xue-Fei Lin, Wen-Jian Hao, Ming Kuang, Hong-Yu Gastroenterol Res Pract Research Article OBJECTIVE: This study is aimed at investigating whether exenatide (Exe) delays the progression of nonalcoholic fatty liver disease (NAFLD) in C57BL/6 mice by targeting the NLRP3 inflammasome through the autophagy/mitophagy pathway. METHODS: Thirty male C57BL/6 mice were randomly divided into three groups: control group (n = 10), model group (n = 10), and Exe (exenatide) group (n = 10). Mouse models of NAFLD and diabetes were established using a high-fat diet and streptozocin. RESULTS: The levels of fasting blood glucose (FBG), total cholesterol (TC), and triglyceride (TG) in the serum were significantly reduced after Exe treatment. The body weight, liver weight/body weight, and number of lipid droplets in the liver significantly decreased in Exe-treated mice. Treatment with Exe markedly reduced the levels of liver lipids, malondialdehyde (MDA), and alanine aminotransferase (ALT) in serum and livers. The number of autophagosomes increased significantly in the Exe group. The expression of LC3A/B-II/I, Beclin-1, Parkin, and BNIP3L increased significantly, whereas NLRP3 and IL-1β proteins were suppressed after Exe treatment. CONCLUSION: We successfully established a mouse model of NAFLD and diabetes. Exe may reduce oxidative stress injury and inhibit the NLRP3 inflammasome by enhancing the autophagy/mitophagy pathway in liver, which has a protective effect on the liver in NAFLD and diabetes in C57BL/6 mice. Hindawi 2018-04-15 /pmc/articles/PMC5925008/ /pubmed/29849583 http://dx.doi.org/10.1155/2018/1864307 Text en Copyright © 2018 Ning Shao et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Shao, Ning Yu, Xin-Yang Ma, Xue-Fei Lin, Wen-Jian Hao, Ming Kuang, Hong-Yu Exenatide Delays the Progression of Nonalcoholic Fatty Liver Disease in C57BL/6 Mice, Which May Involve Inhibition of the NLRP3 Inflammasome through the Mitophagy Pathway |
title | Exenatide Delays the Progression of Nonalcoholic Fatty Liver Disease in C57BL/6 Mice, Which May Involve Inhibition of the NLRP3 Inflammasome through the Mitophagy Pathway |
title_full | Exenatide Delays the Progression of Nonalcoholic Fatty Liver Disease in C57BL/6 Mice, Which May Involve Inhibition of the NLRP3 Inflammasome through the Mitophagy Pathway |
title_fullStr | Exenatide Delays the Progression of Nonalcoholic Fatty Liver Disease in C57BL/6 Mice, Which May Involve Inhibition of the NLRP3 Inflammasome through the Mitophagy Pathway |
title_full_unstemmed | Exenatide Delays the Progression of Nonalcoholic Fatty Liver Disease in C57BL/6 Mice, Which May Involve Inhibition of the NLRP3 Inflammasome through the Mitophagy Pathway |
title_short | Exenatide Delays the Progression of Nonalcoholic Fatty Liver Disease in C57BL/6 Mice, Which May Involve Inhibition of the NLRP3 Inflammasome through the Mitophagy Pathway |
title_sort | exenatide delays the progression of nonalcoholic fatty liver disease in c57bl/6 mice, which may involve inhibition of the nlrp3 inflammasome through the mitophagy pathway |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5925008/ https://www.ncbi.nlm.nih.gov/pubmed/29849583 http://dx.doi.org/10.1155/2018/1864307 |
work_keys_str_mv | AT shaoning exenatidedelaystheprogressionofnonalcoholicfattyliverdiseaseinc57bl6micewhichmayinvolveinhibitionofthenlrp3inflammasomethroughthemitophagypathway AT yuxinyang exenatidedelaystheprogressionofnonalcoholicfattyliverdiseaseinc57bl6micewhichmayinvolveinhibitionofthenlrp3inflammasomethroughthemitophagypathway AT maxuefei exenatidedelaystheprogressionofnonalcoholicfattyliverdiseaseinc57bl6micewhichmayinvolveinhibitionofthenlrp3inflammasomethroughthemitophagypathway AT linwenjian exenatidedelaystheprogressionofnonalcoholicfattyliverdiseaseinc57bl6micewhichmayinvolveinhibitionofthenlrp3inflammasomethroughthemitophagypathway AT haoming exenatidedelaystheprogressionofnonalcoholicfattyliverdiseaseinc57bl6micewhichmayinvolveinhibitionofthenlrp3inflammasomethroughthemitophagypathway AT kuanghongyu exenatidedelaystheprogressionofnonalcoholicfattyliverdiseaseinc57bl6micewhichmayinvolveinhibitionofthenlrp3inflammasomethroughthemitophagypathway |