Cargando…
Machine Learning-Augmented Propensity Score-Adjusted Multilevel Mixed Effects Panel Analysis of Hands-On Cooking and Nutrition Education versus Traditional Curriculum for Medical Students as Preventive Cardiology: Multisite Cohort Study of 3,248 Trainees over 5 Years
BACKGROUND: Cardiovascular disease (CVD) annually claims more lives and costs more dollars than any other disease globally amid widening health disparities, despite the known significant reductions in this burden by low cost dietary changes. The world's first medical school-based teaching kitch...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5925138/ https://www.ncbi.nlm.nih.gov/pubmed/29850526 http://dx.doi.org/10.1155/2018/5051289 |
_version_ | 1783318655138791424 |
---|---|
author | Monlezun, Dominique J. Dart, Lyn Vanbeber, Anne Smith-Barbaro, Peggy Costilla, Vanessa Samuel, Charlotte Terregino, Carol A. Abali, Emine Ercikan Dollinger, Beth Baumgartner, Nicole Kramer, Nicholas Seelochan, Alex Taher, Sabira Deutchman, Mark Evans, Meredith Ellis, Robert B. Oyola, Sonia Maker-Clark, Geeta Dreibelbis, Tomi Budnick, Isadore Tran, David DeValle, Nicole Shepard, Rachel Chow, Erika Petrin, Christine Razavi, Alexander McGowan, Casey Grant, Austin Bird, Mackenzie Carry, Connor McGowan, Glynis McCullough, Colleen Berman, Casey M. Dotson, Kerri Niu, Tianhua Sarris, Leah Harlan, Timothy S. Co-investigators, on behalf of the CHOP |
author_facet | Monlezun, Dominique J. Dart, Lyn Vanbeber, Anne Smith-Barbaro, Peggy Costilla, Vanessa Samuel, Charlotte Terregino, Carol A. Abali, Emine Ercikan Dollinger, Beth Baumgartner, Nicole Kramer, Nicholas Seelochan, Alex Taher, Sabira Deutchman, Mark Evans, Meredith Ellis, Robert B. Oyola, Sonia Maker-Clark, Geeta Dreibelbis, Tomi Budnick, Isadore Tran, David DeValle, Nicole Shepard, Rachel Chow, Erika Petrin, Christine Razavi, Alexander McGowan, Casey Grant, Austin Bird, Mackenzie Carry, Connor McGowan, Glynis McCullough, Colleen Berman, Casey M. Dotson, Kerri Niu, Tianhua Sarris, Leah Harlan, Timothy S. Co-investigators, on behalf of the CHOP |
author_sort | Monlezun, Dominique J. |
collection | PubMed |
description | BACKGROUND: Cardiovascular disease (CVD) annually claims more lives and costs more dollars than any other disease globally amid widening health disparities, despite the known significant reductions in this burden by low cost dietary changes. The world's first medical school-based teaching kitchen therefore launched CHOP-Medical Students as the largest known multisite cohort study of hands-on cooking and nutrition education versus traditional curriculum for medical students. METHODS: This analysis provides a novel integration of artificial intelligence-based machine learning (ML) with causal inference statistics. 43 ML automated algorithms were tested, with the top performer compared to triply robust propensity score-adjusted multilevel mixed effects regression panel analysis of longitudinal data. Inverse-variance weighted fixed effects meta-analysis pooled the individual estimates for competencies. RESULTS: 3,248 unique medical trainees met study criteria from 20 medical schools nationally from August 1, 2012, to June 26, 2017, generating 4,026 completed validated surveys. ML analysis produced similar results to the causal inference statistics based on root mean squared error and accuracy. Hands-on cooking and nutrition education compared to traditional medical school curriculum significantly improved student competencies (OR 2.14, 95% CI 2.00–2.28, p < 0.001) and MedDiet adherence (OR 1.40, 95% CI 1.07–1.84, p = 0.015), while reducing trainees' soft drink consumption (OR 0.56, 95% CI 0.37–0.85, p = 0.007). Overall improved competencies were demonstrated from the initial study site through the scale-up of the intervention to 10 sites nationally (p < 0.001). DISCUSSION: This study provides the first machine learning-augmented causal inference analysis of a multisite cohort showing hands-on cooking and nutrition education for medical trainees improves their competencies counseling patients on nutrition, while improving students' own diets. This study suggests that the public health and medical sectors can unite population health management and precision medicine for a sustainable model of next-generation health systems providing effective, equitable, accessible care beginning with reversing the CVD epidemic. |
format | Online Article Text |
id | pubmed-5925138 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-59251382018-05-30 Machine Learning-Augmented Propensity Score-Adjusted Multilevel Mixed Effects Panel Analysis of Hands-On Cooking and Nutrition Education versus Traditional Curriculum for Medical Students as Preventive Cardiology: Multisite Cohort Study of 3,248 Trainees over 5 Years Monlezun, Dominique J. Dart, Lyn Vanbeber, Anne Smith-Barbaro, Peggy Costilla, Vanessa Samuel, Charlotte Terregino, Carol A. Abali, Emine Ercikan Dollinger, Beth Baumgartner, Nicole Kramer, Nicholas Seelochan, Alex Taher, Sabira Deutchman, Mark Evans, Meredith Ellis, Robert B. Oyola, Sonia Maker-Clark, Geeta Dreibelbis, Tomi Budnick, Isadore Tran, David DeValle, Nicole Shepard, Rachel Chow, Erika Petrin, Christine Razavi, Alexander McGowan, Casey Grant, Austin Bird, Mackenzie Carry, Connor McGowan, Glynis McCullough, Colleen Berman, Casey M. Dotson, Kerri Niu, Tianhua Sarris, Leah Harlan, Timothy S. Co-investigators, on behalf of the CHOP Biomed Res Int Research Article BACKGROUND: Cardiovascular disease (CVD) annually claims more lives and costs more dollars than any other disease globally amid widening health disparities, despite the known significant reductions in this burden by low cost dietary changes. The world's first medical school-based teaching kitchen therefore launched CHOP-Medical Students as the largest known multisite cohort study of hands-on cooking and nutrition education versus traditional curriculum for medical students. METHODS: This analysis provides a novel integration of artificial intelligence-based machine learning (ML) with causal inference statistics. 43 ML automated algorithms were tested, with the top performer compared to triply robust propensity score-adjusted multilevel mixed effects regression panel analysis of longitudinal data. Inverse-variance weighted fixed effects meta-analysis pooled the individual estimates for competencies. RESULTS: 3,248 unique medical trainees met study criteria from 20 medical schools nationally from August 1, 2012, to June 26, 2017, generating 4,026 completed validated surveys. ML analysis produced similar results to the causal inference statistics based on root mean squared error and accuracy. Hands-on cooking and nutrition education compared to traditional medical school curriculum significantly improved student competencies (OR 2.14, 95% CI 2.00–2.28, p < 0.001) and MedDiet adherence (OR 1.40, 95% CI 1.07–1.84, p = 0.015), while reducing trainees' soft drink consumption (OR 0.56, 95% CI 0.37–0.85, p = 0.007). Overall improved competencies were demonstrated from the initial study site through the scale-up of the intervention to 10 sites nationally (p < 0.001). DISCUSSION: This study provides the first machine learning-augmented causal inference analysis of a multisite cohort showing hands-on cooking and nutrition education for medical trainees improves their competencies counseling patients on nutrition, while improving students' own diets. This study suggests that the public health and medical sectors can unite population health management and precision medicine for a sustainable model of next-generation health systems providing effective, equitable, accessible care beginning with reversing the CVD epidemic. Hindawi 2018-04-15 /pmc/articles/PMC5925138/ /pubmed/29850526 http://dx.doi.org/10.1155/2018/5051289 Text en Copyright © 2018 Dominique J. Monlezun et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Monlezun, Dominique J. Dart, Lyn Vanbeber, Anne Smith-Barbaro, Peggy Costilla, Vanessa Samuel, Charlotte Terregino, Carol A. Abali, Emine Ercikan Dollinger, Beth Baumgartner, Nicole Kramer, Nicholas Seelochan, Alex Taher, Sabira Deutchman, Mark Evans, Meredith Ellis, Robert B. Oyola, Sonia Maker-Clark, Geeta Dreibelbis, Tomi Budnick, Isadore Tran, David DeValle, Nicole Shepard, Rachel Chow, Erika Petrin, Christine Razavi, Alexander McGowan, Casey Grant, Austin Bird, Mackenzie Carry, Connor McGowan, Glynis McCullough, Colleen Berman, Casey M. Dotson, Kerri Niu, Tianhua Sarris, Leah Harlan, Timothy S. Co-investigators, on behalf of the CHOP Machine Learning-Augmented Propensity Score-Adjusted Multilevel Mixed Effects Panel Analysis of Hands-On Cooking and Nutrition Education versus Traditional Curriculum for Medical Students as Preventive Cardiology: Multisite Cohort Study of 3,248 Trainees over 5 Years |
title | Machine Learning-Augmented Propensity Score-Adjusted Multilevel Mixed Effects Panel Analysis of Hands-On Cooking and Nutrition Education versus Traditional Curriculum for Medical Students as Preventive Cardiology: Multisite Cohort Study of 3,248 Trainees over 5 Years |
title_full | Machine Learning-Augmented Propensity Score-Adjusted Multilevel Mixed Effects Panel Analysis of Hands-On Cooking and Nutrition Education versus Traditional Curriculum for Medical Students as Preventive Cardiology: Multisite Cohort Study of 3,248 Trainees over 5 Years |
title_fullStr | Machine Learning-Augmented Propensity Score-Adjusted Multilevel Mixed Effects Panel Analysis of Hands-On Cooking and Nutrition Education versus Traditional Curriculum for Medical Students as Preventive Cardiology: Multisite Cohort Study of 3,248 Trainees over 5 Years |
title_full_unstemmed | Machine Learning-Augmented Propensity Score-Adjusted Multilevel Mixed Effects Panel Analysis of Hands-On Cooking and Nutrition Education versus Traditional Curriculum for Medical Students as Preventive Cardiology: Multisite Cohort Study of 3,248 Trainees over 5 Years |
title_short | Machine Learning-Augmented Propensity Score-Adjusted Multilevel Mixed Effects Panel Analysis of Hands-On Cooking and Nutrition Education versus Traditional Curriculum for Medical Students as Preventive Cardiology: Multisite Cohort Study of 3,248 Trainees over 5 Years |
title_sort | machine learning-augmented propensity score-adjusted multilevel mixed effects panel analysis of hands-on cooking and nutrition education versus traditional curriculum for medical students as preventive cardiology: multisite cohort study of 3,248 trainees over 5 years |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5925138/ https://www.ncbi.nlm.nih.gov/pubmed/29850526 http://dx.doi.org/10.1155/2018/5051289 |
work_keys_str_mv | AT monlezundominiquej machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years AT dartlyn machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years AT vanbeberanne machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years AT smithbarbaropeggy machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years AT costillavanessa machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years AT samuelcharlotte machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years AT terreginocarola machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years AT abaliemineercikan machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years AT dollingerbeth machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years AT baumgartnernicole machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years AT kramernicholas machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years AT seelochanalex machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years AT tahersabira machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years AT deutchmanmark machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years AT evansmeredith machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years AT ellisrobertb machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years AT oyolasonia machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years AT makerclarkgeeta machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years AT dreibelbistomi machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years AT budnickisadore machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years AT trandavid machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years AT devallenicole machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years AT shepardrachel machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years AT chowerika machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years AT petrinchristine machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years AT razavialexander machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years AT mcgowancasey machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years AT grantaustin machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years AT birdmackenzie machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years AT carryconnor machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years AT mcgowanglynis machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years AT mcculloughcolleen machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years AT bermancaseym machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years AT dotsonkerri machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years AT niutianhua machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years AT sarrisleah machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years AT harlantimothys machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years AT coinvestigatorsonbehalfofthechop machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years |