Cargando…

Machine Learning-Augmented Propensity Score-Adjusted Multilevel Mixed Effects Panel Analysis of Hands-On Cooking and Nutrition Education versus Traditional Curriculum for Medical Students as Preventive Cardiology: Multisite Cohort Study of 3,248 Trainees over 5 Years

BACKGROUND: Cardiovascular disease (CVD) annually claims more lives and costs more dollars than any other disease globally amid widening health disparities, despite the known significant reductions in this burden by low cost dietary changes. The world's first medical school-based teaching kitch...

Descripción completa

Detalles Bibliográficos
Autores principales: Monlezun, Dominique J., Dart, Lyn, Vanbeber, Anne, Smith-Barbaro, Peggy, Costilla, Vanessa, Samuel, Charlotte, Terregino, Carol A., Abali, Emine Ercikan, Dollinger, Beth, Baumgartner, Nicole, Kramer, Nicholas, Seelochan, Alex, Taher, Sabira, Deutchman, Mark, Evans, Meredith, Ellis, Robert B., Oyola, Sonia, Maker-Clark, Geeta, Dreibelbis, Tomi, Budnick, Isadore, Tran, David, DeValle, Nicole, Shepard, Rachel, Chow, Erika, Petrin, Christine, Razavi, Alexander, McGowan, Casey, Grant, Austin, Bird, Mackenzie, Carry, Connor, McGowan, Glynis, McCullough, Colleen, Berman, Casey M., Dotson, Kerri, Niu, Tianhua, Sarris, Leah, Harlan, Timothy S., Co-investigators, on behalf of the CHOP
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5925138/
https://www.ncbi.nlm.nih.gov/pubmed/29850526
http://dx.doi.org/10.1155/2018/5051289
_version_ 1783318655138791424
author Monlezun, Dominique J.
Dart, Lyn
Vanbeber, Anne
Smith-Barbaro, Peggy
Costilla, Vanessa
Samuel, Charlotte
Terregino, Carol A.
Abali, Emine Ercikan
Dollinger, Beth
Baumgartner, Nicole
Kramer, Nicholas
Seelochan, Alex
Taher, Sabira
Deutchman, Mark
Evans, Meredith
Ellis, Robert B.
Oyola, Sonia
Maker-Clark, Geeta
Dreibelbis, Tomi
Budnick, Isadore
Tran, David
DeValle, Nicole
Shepard, Rachel
Chow, Erika
Petrin, Christine
Razavi, Alexander
McGowan, Casey
Grant, Austin
Bird, Mackenzie
Carry, Connor
McGowan, Glynis
McCullough, Colleen
Berman, Casey M.
Dotson, Kerri
Niu, Tianhua
Sarris, Leah
Harlan, Timothy S.
Co-investigators, on behalf of the CHOP
author_facet Monlezun, Dominique J.
Dart, Lyn
Vanbeber, Anne
Smith-Barbaro, Peggy
Costilla, Vanessa
Samuel, Charlotte
Terregino, Carol A.
Abali, Emine Ercikan
Dollinger, Beth
Baumgartner, Nicole
Kramer, Nicholas
Seelochan, Alex
Taher, Sabira
Deutchman, Mark
Evans, Meredith
Ellis, Robert B.
Oyola, Sonia
Maker-Clark, Geeta
Dreibelbis, Tomi
Budnick, Isadore
Tran, David
DeValle, Nicole
Shepard, Rachel
Chow, Erika
Petrin, Christine
Razavi, Alexander
McGowan, Casey
Grant, Austin
Bird, Mackenzie
Carry, Connor
McGowan, Glynis
McCullough, Colleen
Berman, Casey M.
Dotson, Kerri
Niu, Tianhua
Sarris, Leah
Harlan, Timothy S.
Co-investigators, on behalf of the CHOP
author_sort Monlezun, Dominique J.
collection PubMed
description BACKGROUND: Cardiovascular disease (CVD) annually claims more lives and costs more dollars than any other disease globally amid widening health disparities, despite the known significant reductions in this burden by low cost dietary changes. The world's first medical school-based teaching kitchen therefore launched CHOP-Medical Students as the largest known multisite cohort study of hands-on cooking and nutrition education versus traditional curriculum for medical students. METHODS: This analysis provides a novel integration of artificial intelligence-based machine learning (ML) with causal inference statistics. 43 ML automated algorithms were tested, with the top performer compared to triply robust propensity score-adjusted multilevel mixed effects regression panel analysis of longitudinal data. Inverse-variance weighted fixed effects meta-analysis pooled the individual estimates for competencies. RESULTS: 3,248 unique medical trainees met study criteria from 20 medical schools nationally from August 1, 2012, to June 26, 2017, generating 4,026 completed validated surveys. ML analysis produced similar results to the causal inference statistics based on root mean squared error and accuracy. Hands-on cooking and nutrition education compared to traditional medical school curriculum significantly improved student competencies (OR 2.14, 95% CI 2.00–2.28, p < 0.001) and MedDiet adherence (OR 1.40, 95% CI 1.07–1.84, p = 0.015), while reducing trainees' soft drink consumption (OR 0.56, 95% CI 0.37–0.85, p = 0.007). Overall improved competencies were demonstrated from the initial study site through the scale-up of the intervention to 10 sites nationally (p < 0.001). DISCUSSION: This study provides the first machine learning-augmented causal inference analysis of a multisite cohort showing hands-on cooking and nutrition education for medical trainees improves their competencies counseling patients on nutrition, while improving students' own diets. This study suggests that the public health and medical sectors can unite population health management and precision medicine for a sustainable model of next-generation health systems providing effective, equitable, accessible care beginning with reversing the CVD epidemic.
format Online
Article
Text
id pubmed-5925138
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-59251382018-05-30 Machine Learning-Augmented Propensity Score-Adjusted Multilevel Mixed Effects Panel Analysis of Hands-On Cooking and Nutrition Education versus Traditional Curriculum for Medical Students as Preventive Cardiology: Multisite Cohort Study of 3,248 Trainees over 5 Years Monlezun, Dominique J. Dart, Lyn Vanbeber, Anne Smith-Barbaro, Peggy Costilla, Vanessa Samuel, Charlotte Terregino, Carol A. Abali, Emine Ercikan Dollinger, Beth Baumgartner, Nicole Kramer, Nicholas Seelochan, Alex Taher, Sabira Deutchman, Mark Evans, Meredith Ellis, Robert B. Oyola, Sonia Maker-Clark, Geeta Dreibelbis, Tomi Budnick, Isadore Tran, David DeValle, Nicole Shepard, Rachel Chow, Erika Petrin, Christine Razavi, Alexander McGowan, Casey Grant, Austin Bird, Mackenzie Carry, Connor McGowan, Glynis McCullough, Colleen Berman, Casey M. Dotson, Kerri Niu, Tianhua Sarris, Leah Harlan, Timothy S. Co-investigators, on behalf of the CHOP Biomed Res Int Research Article BACKGROUND: Cardiovascular disease (CVD) annually claims more lives and costs more dollars than any other disease globally amid widening health disparities, despite the known significant reductions in this burden by low cost dietary changes. The world's first medical school-based teaching kitchen therefore launched CHOP-Medical Students as the largest known multisite cohort study of hands-on cooking and nutrition education versus traditional curriculum for medical students. METHODS: This analysis provides a novel integration of artificial intelligence-based machine learning (ML) with causal inference statistics. 43 ML automated algorithms were tested, with the top performer compared to triply robust propensity score-adjusted multilevel mixed effects regression panel analysis of longitudinal data. Inverse-variance weighted fixed effects meta-analysis pooled the individual estimates for competencies. RESULTS: 3,248 unique medical trainees met study criteria from 20 medical schools nationally from August 1, 2012, to June 26, 2017, generating 4,026 completed validated surveys. ML analysis produced similar results to the causal inference statistics based on root mean squared error and accuracy. Hands-on cooking and nutrition education compared to traditional medical school curriculum significantly improved student competencies (OR 2.14, 95% CI 2.00–2.28, p < 0.001) and MedDiet adherence (OR 1.40, 95% CI 1.07–1.84, p = 0.015), while reducing trainees' soft drink consumption (OR 0.56, 95% CI 0.37–0.85, p = 0.007). Overall improved competencies were demonstrated from the initial study site through the scale-up of the intervention to 10 sites nationally (p < 0.001). DISCUSSION: This study provides the first machine learning-augmented causal inference analysis of a multisite cohort showing hands-on cooking and nutrition education for medical trainees improves their competencies counseling patients on nutrition, while improving students' own diets. This study suggests that the public health and medical sectors can unite population health management and precision medicine for a sustainable model of next-generation health systems providing effective, equitable, accessible care beginning with reversing the CVD epidemic. Hindawi 2018-04-15 /pmc/articles/PMC5925138/ /pubmed/29850526 http://dx.doi.org/10.1155/2018/5051289 Text en Copyright © 2018 Dominique J. Monlezun et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Monlezun, Dominique J.
Dart, Lyn
Vanbeber, Anne
Smith-Barbaro, Peggy
Costilla, Vanessa
Samuel, Charlotte
Terregino, Carol A.
Abali, Emine Ercikan
Dollinger, Beth
Baumgartner, Nicole
Kramer, Nicholas
Seelochan, Alex
Taher, Sabira
Deutchman, Mark
Evans, Meredith
Ellis, Robert B.
Oyola, Sonia
Maker-Clark, Geeta
Dreibelbis, Tomi
Budnick, Isadore
Tran, David
DeValle, Nicole
Shepard, Rachel
Chow, Erika
Petrin, Christine
Razavi, Alexander
McGowan, Casey
Grant, Austin
Bird, Mackenzie
Carry, Connor
McGowan, Glynis
McCullough, Colleen
Berman, Casey M.
Dotson, Kerri
Niu, Tianhua
Sarris, Leah
Harlan, Timothy S.
Co-investigators, on behalf of the CHOP
Machine Learning-Augmented Propensity Score-Adjusted Multilevel Mixed Effects Panel Analysis of Hands-On Cooking and Nutrition Education versus Traditional Curriculum for Medical Students as Preventive Cardiology: Multisite Cohort Study of 3,248 Trainees over 5 Years
title Machine Learning-Augmented Propensity Score-Adjusted Multilevel Mixed Effects Panel Analysis of Hands-On Cooking and Nutrition Education versus Traditional Curriculum for Medical Students as Preventive Cardiology: Multisite Cohort Study of 3,248 Trainees over 5 Years
title_full Machine Learning-Augmented Propensity Score-Adjusted Multilevel Mixed Effects Panel Analysis of Hands-On Cooking and Nutrition Education versus Traditional Curriculum for Medical Students as Preventive Cardiology: Multisite Cohort Study of 3,248 Trainees over 5 Years
title_fullStr Machine Learning-Augmented Propensity Score-Adjusted Multilevel Mixed Effects Panel Analysis of Hands-On Cooking and Nutrition Education versus Traditional Curriculum for Medical Students as Preventive Cardiology: Multisite Cohort Study of 3,248 Trainees over 5 Years
title_full_unstemmed Machine Learning-Augmented Propensity Score-Adjusted Multilevel Mixed Effects Panel Analysis of Hands-On Cooking and Nutrition Education versus Traditional Curriculum for Medical Students as Preventive Cardiology: Multisite Cohort Study of 3,248 Trainees over 5 Years
title_short Machine Learning-Augmented Propensity Score-Adjusted Multilevel Mixed Effects Panel Analysis of Hands-On Cooking and Nutrition Education versus Traditional Curriculum for Medical Students as Preventive Cardiology: Multisite Cohort Study of 3,248 Trainees over 5 Years
title_sort machine learning-augmented propensity score-adjusted multilevel mixed effects panel analysis of hands-on cooking and nutrition education versus traditional curriculum for medical students as preventive cardiology: multisite cohort study of 3,248 trainees over 5 years
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5925138/
https://www.ncbi.nlm.nih.gov/pubmed/29850526
http://dx.doi.org/10.1155/2018/5051289
work_keys_str_mv AT monlezundominiquej machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years
AT dartlyn machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years
AT vanbeberanne machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years
AT smithbarbaropeggy machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years
AT costillavanessa machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years
AT samuelcharlotte machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years
AT terreginocarola machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years
AT abaliemineercikan machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years
AT dollingerbeth machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years
AT baumgartnernicole machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years
AT kramernicholas machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years
AT seelochanalex machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years
AT tahersabira machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years
AT deutchmanmark machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years
AT evansmeredith machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years
AT ellisrobertb machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years
AT oyolasonia machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years
AT makerclarkgeeta machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years
AT dreibelbistomi machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years
AT budnickisadore machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years
AT trandavid machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years
AT devallenicole machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years
AT shepardrachel machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years
AT chowerika machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years
AT petrinchristine machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years
AT razavialexander machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years
AT mcgowancasey machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years
AT grantaustin machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years
AT birdmackenzie machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years
AT carryconnor machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years
AT mcgowanglynis machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years
AT mcculloughcolleen machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years
AT bermancaseym machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years
AT dotsonkerri machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years
AT niutianhua machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years
AT sarrisleah machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years
AT harlantimothys machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years
AT coinvestigatorsonbehalfofthechop machinelearningaugmentedpropensityscoreadjustedmultilevelmixedeffectspanelanalysisofhandsoncookingandnutritioneducationversustraditionalcurriculumformedicalstudentsaspreventivecardiologymultisitecohortstudyof3248traineesover5years