Cargando…
Sinc-Windowing and Multiple Correlation Coefficients Improve SSVEP Recognition Based on Canonical Correlation Analysis
Canonical Correlation Analysis (CCA) is an increasingly used approach in the field of Steady-State Visually Evoked Potential (SSVEP) recognition. The efficacy of the method has been widely proven, and several variations have been proposed. However, most CCA variations tend to complicate the method,...
Autores principales: | Mondini, Valeria, Mangia, Anna Lisa, Talevi, Luca, Cappello, Angelo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5925149/ https://www.ncbi.nlm.nih.gov/pubmed/29849546 http://dx.doi.org/10.1155/2018/4278782 |
Ejemplares similares
-
Solving the SSVEP Paradigm Using the Nonlinear Canonical Correlation Analysis Approach
por: De la Cruz-Guevara, Danni Rodrigo, et al.
Publicado: (2021) -
Efficient Low-Frequency SSVEP Detection with Wearable EEG Using Normalized Canonical Correlation Analysis
por: Kartsch, Victor Javier, et al.
Publicado: (2022) -
EEG-Based BCI System Using Adaptive Features Extraction and Classification Procedures
por: Mondini, Valeria, et al.
Publicado: (2016) -
Single-session tDCS over the dominant hemisphere affects contralateral spectral EEG power, but does not enhance neurofeedback-guided event-related desynchronization of the non-dominant hemisphere's sensorimotor rhythm
por: Mondini, Valeria, et al.
Publicado: (2018) -
A novel untrained SSVEP-EEG feature enhancement method using canonical correlation analysis and underdamped second-order stochastic resonance
por: Chen, Ruiquan, et al.
Publicado: (2023)