Cargando…

Aether: leveraging linear programming for optimal cloud computing in genomics

MOTIVATION: Across biology, we are seeing rapid developments in scale of data production without a corresponding increase in data analysis capabilities. RESULTS: Here, we present Aether (http://aether.kosticlab.org), an intuitive, easy-to-use, cost-effective and scalable framework that uses linear p...

Descripción completa

Detalles Bibliográficos
Autores principales: Luber, Jacob M, Tierney, Braden T, Cofer, Evan M, Patel, Chirag J, Kostic, Aleksandar D
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5925767/
https://www.ncbi.nlm.nih.gov/pubmed/29228186
http://dx.doi.org/10.1093/bioinformatics/btx787
Descripción
Sumario:MOTIVATION: Across biology, we are seeing rapid developments in scale of data production without a corresponding increase in data analysis capabilities. RESULTS: Here, we present Aether (http://aether.kosticlab.org), an intuitive, easy-to-use, cost-effective and scalable framework that uses linear programming to optimally bid on and deploy combinations of underutilized cloud computing resources. Our approach simultaneously minimizes the cost of data analysis and provides an easy transition from users’ existing HPC pipelines. AVAILABILITY AND IMPLEMENTATION: Data utilized are available at https://pubs.broadinstitute.org/diabimmune and with EBI SRA accession ERP005989. Source code is available at (https://github.com/kosticlab/aether). Examples, documentation and a tutorial are available at http://aether.kosticlab.org. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.