Cargando…
GRAM-CNN: a deep learning approach with local context for named entity recognition in biomedical text
MOTIVATION: Best performing named entity recognition (NER) methods for biomedical literature are based on hand-crafted features or task-specific rules, which are costly to produce and difficult to generalize to other corpora. End-to-end neural networks achieve state-of-the-art performance without ha...
Autores principales: | Zhu, Qile, Li, Xiaolin, Conesa, Ana, Pereira, Cécile |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5925775/ https://www.ncbi.nlm.nih.gov/pubmed/29272325 http://dx.doi.org/10.1093/bioinformatics/btx815 |
Ejemplares similares
-
Deep learning with word embeddings improves biomedical named entity recognition
por: Habibi, Maryam, et al.
Publicado: (2017) -
On Biomedical Named Entity Recognition: Experiments in Interlingual Transfer for Clinical and Social Media Texts
por: Miftahutdinov, Zulfat, et al.
Publicado: (2020) -
Named Entity Recognition of Medical Text Based on the Deep Neural Network
por: Yang, Tianjiao, et al.
Publicado: (2022) -
Improving deep learning method for biomedical named entity recognition by using entity definition information
por: Xiong, Ying, et al.
Publicado: (2021) -
CollaboNet: collaboration of deep neural networks for biomedical named entity recognition
por: Yoon, Wonjin, et al.
Publicado: (2019)