Cargando…
DNCON2: improved protein contact prediction using two-level deep convolutional neural networks
MOTIVATION: Significant improvements in the prediction of protein residue–residue contacts are observed in the recent years. These contacts, predicted using a variety of coevolution-based and machine learning methods, are the key contributors to the recent progress in ab initio protein structure pre...
Autores principales: | Adhikari, Badri, Hou, Jie, Cheng, Jianlin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5925776/ https://www.ncbi.nlm.nih.gov/pubmed/29228185 http://dx.doi.org/10.1093/bioinformatics/btx781 |
Ejemplares similares
-
A study and benchmark of DNcon: a method for protein residue-residue contact prediction using deep networks
por: Eickholt, Jesse, et al.
Publicado: (2013) -
DeepSF: deep convolutional neural network for mapping protein sequences to folds
por: Hou, Jie, et al.
Publicado: (2018) -
DNCON2_Inter: predicting interchain contacts for homodimeric and homomultimeric protein complexes using multiple sequence alignments of monomers and deep learning
por: Quadir, Farhan, et al.
Publicado: (2021) -
Analysis of several key factors influencing deep learning-based inter-residue contact prediction
por: Wu, Tianqi, et al.
Publicado: (2019) -
Improved protein structure reconstruction using secondary structures, contacts at higher distance thresholds, and non-contacts
por: Adhikari, Badri, et al.
Publicado: (2017)