Cargando…

Apoptotic Changes Precede Mitochondrial Dysfunction in Red Cell‐type Pyruvate Kinase Mutant Mouse Erythroleukemia Cell Lines

Two erythroleukemia cell lines have been established from the splenic lesions of red blood celltype pyruvate kinase (R‐PK) activity‐deficient mice of CBA/N origin infected with a polycythemic strain of Friend leukemia virus complex (FVp). Ten to 30 % of the cells of these cell lines undergo apoptoti...

Descripción completa

Detalles Bibliográficos
Autores principales: Aisaki, Ken‐ichi, Kanno, Hitoshi, Oyaizu, Naoki, Hara, Yukichi, Miwa, Shiro, Ikawa1, Yoji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 1999
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5926040/
https://www.ncbi.nlm.nih.gov/pubmed/10189887
http://dx.doi.org/10.1111/j.1349-7006.1999.tb00730.x
_version_ 1783318823198261248
author Aisaki, Ken‐ichi
Kanno, Hitoshi
Oyaizu, Naoki
Hara, Yukichi
Miwa, Shiro
Ikawa1, Yoji
author_facet Aisaki, Ken‐ichi
Kanno, Hitoshi
Oyaizu, Naoki
Hara, Yukichi
Miwa, Shiro
Ikawa1, Yoji
author_sort Aisaki, Ken‐ichi
collection PubMed
description Two erythroleukemia cell lines have been established from the splenic lesions of red blood celltype pyruvate kinase (R‐PK) activity‐deficient mice of CBA/N origin infected with a polycythemic strain of Friend leukemia virus complex (FVp). Ten to 30 % of the cells of these cell lines undergo apoptotic changes in routine passage, as shown by nuclear fragmentation, DNA laddering, DNA content (propidium iodide (PI) staining), and annexin V binding assay. In these cells, however, although adenosine 5′‐triphosphate (ATP) levels were lower than in the control cells, the mitochondrial inner transmembrane potential (Δψ(m)), detected by rhodamine 123 (R123) and diSC(3)(5) staining, remained unchanged until the final stage of apoptosis. No evidence was obtained to relate this finding to R‐PK mutation due to difficulty in cloning stable, conditionally inducible R‐PK gene transfectants. However, low Δψ(m) in the apoptotic cell population of the control T3‐K‐1 (K‐1) and T3‐Cl‐2‐0 (2‐0) Friend erythroleukemia cells supports a possible relationship, as do results obtained in two Friend erythroleukemia cells recently isolated from normal CBA/N mice. These cell lines are expected to be useful for clarifying both the primary apoptotic changes independent of mitochondrial dysfunction and the PK‐isozyme changes during erythrodifferentiation, for example, the decreased muscle type 2 (M2) PK level. Modification of growth signals in these cell lines may modulate differentiation and/or apoptosis and allow further elucidation of the signaling networks.
format Online
Article
Text
id pubmed-5926040
institution National Center for Biotechnology Information
language English
publishDate 1999
publisher Blackwell Publishing Ltd
record_format MEDLINE/PubMed
spelling pubmed-59260402018-05-11 Apoptotic Changes Precede Mitochondrial Dysfunction in Red Cell‐type Pyruvate Kinase Mutant Mouse Erythroleukemia Cell Lines Aisaki, Ken‐ichi Kanno, Hitoshi Oyaizu, Naoki Hara, Yukichi Miwa, Shiro Ikawa1, Yoji Jpn J Cancer Res Article Two erythroleukemia cell lines have been established from the splenic lesions of red blood celltype pyruvate kinase (R‐PK) activity‐deficient mice of CBA/N origin infected with a polycythemic strain of Friend leukemia virus complex (FVp). Ten to 30 % of the cells of these cell lines undergo apoptotic changes in routine passage, as shown by nuclear fragmentation, DNA laddering, DNA content (propidium iodide (PI) staining), and annexin V binding assay. In these cells, however, although adenosine 5′‐triphosphate (ATP) levels were lower than in the control cells, the mitochondrial inner transmembrane potential (Δψ(m)), detected by rhodamine 123 (R123) and diSC(3)(5) staining, remained unchanged until the final stage of apoptosis. No evidence was obtained to relate this finding to R‐PK mutation due to difficulty in cloning stable, conditionally inducible R‐PK gene transfectants. However, low Δψ(m) in the apoptotic cell population of the control T3‐K‐1 (K‐1) and T3‐Cl‐2‐0 (2‐0) Friend erythroleukemia cells supports a possible relationship, as do results obtained in two Friend erythroleukemia cells recently isolated from normal CBA/N mice. These cell lines are expected to be useful for clarifying both the primary apoptotic changes independent of mitochondrial dysfunction and the PK‐isozyme changes during erythrodifferentiation, for example, the decreased muscle type 2 (M2) PK level. Modification of growth signals in these cell lines may modulate differentiation and/or apoptosis and allow further elucidation of the signaling networks. Blackwell Publishing Ltd 1999-02 /pmc/articles/PMC5926040/ /pubmed/10189887 http://dx.doi.org/10.1111/j.1349-7006.1999.tb00730.x Text en
spellingShingle Article
Aisaki, Ken‐ichi
Kanno, Hitoshi
Oyaizu, Naoki
Hara, Yukichi
Miwa, Shiro
Ikawa1, Yoji
Apoptotic Changes Precede Mitochondrial Dysfunction in Red Cell‐type Pyruvate Kinase Mutant Mouse Erythroleukemia Cell Lines
title Apoptotic Changes Precede Mitochondrial Dysfunction in Red Cell‐type Pyruvate Kinase Mutant Mouse Erythroleukemia Cell Lines
title_full Apoptotic Changes Precede Mitochondrial Dysfunction in Red Cell‐type Pyruvate Kinase Mutant Mouse Erythroleukemia Cell Lines
title_fullStr Apoptotic Changes Precede Mitochondrial Dysfunction in Red Cell‐type Pyruvate Kinase Mutant Mouse Erythroleukemia Cell Lines
title_full_unstemmed Apoptotic Changes Precede Mitochondrial Dysfunction in Red Cell‐type Pyruvate Kinase Mutant Mouse Erythroleukemia Cell Lines
title_short Apoptotic Changes Precede Mitochondrial Dysfunction in Red Cell‐type Pyruvate Kinase Mutant Mouse Erythroleukemia Cell Lines
title_sort apoptotic changes precede mitochondrial dysfunction in red cell‐type pyruvate kinase mutant mouse erythroleukemia cell lines
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5926040/
https://www.ncbi.nlm.nih.gov/pubmed/10189887
http://dx.doi.org/10.1111/j.1349-7006.1999.tb00730.x
work_keys_str_mv AT aisakikenichi apoptoticchangesprecedemitochondrialdysfunctioninredcelltypepyruvatekinasemutantmouseerythroleukemiacelllines
AT kannohitoshi apoptoticchangesprecedemitochondrialdysfunctioninredcelltypepyruvatekinasemutantmouseerythroleukemiacelllines
AT oyaizunaoki apoptoticchangesprecedemitochondrialdysfunctioninredcelltypepyruvatekinasemutantmouseerythroleukemiacelllines
AT harayukichi apoptoticchangesprecedemitochondrialdysfunctioninredcelltypepyruvatekinasemutantmouseerythroleukemiacelllines
AT miwashiro apoptoticchangesprecedemitochondrialdysfunctioninredcelltypepyruvatekinasemutantmouseerythroleukemiacelllines
AT ikawa1yoji apoptoticchangesprecedemitochondrialdysfunctioninredcelltypepyruvatekinasemutantmouseerythroleukemiacelllines