Cargando…

Different Mutation Frequencies and Spectra among Organs by N‐Methyl‐N‐nitrosourea in rpsL (strA) Transgenic Mice

The frequencies and spectra of N‐methyl‐N‐nitrosourea (MNU)‐induced in vivo somatic mutations were determined in rpsL (strA) transgenic mice. The wild‐type rpsL gene, which exhibits a streptomycin‐sensitive (Sm(s)) phenotype, was used as the rescue marker gene. Studies of mutation spectra among diff...

Descripción completa

Detalles Bibliográficos
Autores principales: Shioyama, Yoshiyuki, Gondo, Yoichi, Nakao, Kazuki, Katsuki, Motoya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2000
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5926380/
https://www.ncbi.nlm.nih.gov/pubmed/10835492
http://dx.doi.org/10.1111/j.1349-7006.2000.tb00971.x
_version_ 1783318893229506560
author Shioyama, Yoshiyuki
Gondo, Yoichi
Nakao, Kazuki
Katsuki, Motoya
author_facet Shioyama, Yoshiyuki
Gondo, Yoichi
Nakao, Kazuki
Katsuki, Motoya
author_sort Shioyama, Yoshiyuki
collection PubMed
description The frequencies and spectra of N‐methyl‐N‐nitrosourea (MNU)‐induced in vivo somatic mutations were determined in rpsL (strA) transgenic mice. The wild‐type rpsL gene, which exhibits a streptomycin‐sensitive (Sm(s)) phenotype, was used as the rescue marker gene. Studies of mutation spectra among different organs and tissues were simplified using this system because of the short coding sequence (375 bp) of the rpsL gene. MNU administration to transgenic mice significantly elevated the mutation frequencies in various adult organs. Two distinctive patterns of mutation spectrum were observed, depending on the organs tested. Mutations derived from labile organs (spleen and thymus) were predominantly G:C to A:T transitions, as expected for MNU mutagenesis. Stable organs like the liver and brain, however, carried many fewer G:C to A:T transitions but significantly more single base deletions, of which the spectrum was very similar to that of background mutations in the rpsL transgenic mice. This spectrum difference among more and less proliferating organs was confirmed by the predominant occurrence of G:C to A:T transitions in fetal liver cells exposed to transplacental MNU treatment. In addition, most (approximately 90%) of the G:C to A:T transitions induced by MNU were detected in the first nucleotide of some 5′‐G‐(C or G)‐3’ sequences, many of which corresponded to the middle guanine residue of 5′‐purine‐G‐(C or G)‐3’ sequences. It is thus suggested that at particular sites, the neighboring bases in both the 5’ side and 3’ side seem to influence either the susceptibility to DNA damage or the ability to repair MNUinduced lesions.
format Online
Article
Text
id pubmed-5926380
institution National Center for Biotechnology Information
language English
publishDate 2000
publisher Blackwell Publishing Ltd
record_format MEDLINE/PubMed
spelling pubmed-59263802018-05-11 Different Mutation Frequencies and Spectra among Organs by N‐Methyl‐N‐nitrosourea in rpsL (strA) Transgenic Mice Shioyama, Yoshiyuki Gondo, Yoichi Nakao, Kazuki Katsuki, Motoya Jpn J Cancer Res Article The frequencies and spectra of N‐methyl‐N‐nitrosourea (MNU)‐induced in vivo somatic mutations were determined in rpsL (strA) transgenic mice. The wild‐type rpsL gene, which exhibits a streptomycin‐sensitive (Sm(s)) phenotype, was used as the rescue marker gene. Studies of mutation spectra among different organs and tissues were simplified using this system because of the short coding sequence (375 bp) of the rpsL gene. MNU administration to transgenic mice significantly elevated the mutation frequencies in various adult organs. Two distinctive patterns of mutation spectrum were observed, depending on the organs tested. Mutations derived from labile organs (spleen and thymus) were predominantly G:C to A:T transitions, as expected for MNU mutagenesis. Stable organs like the liver and brain, however, carried many fewer G:C to A:T transitions but significantly more single base deletions, of which the spectrum was very similar to that of background mutations in the rpsL transgenic mice. This spectrum difference among more and less proliferating organs was confirmed by the predominant occurrence of G:C to A:T transitions in fetal liver cells exposed to transplacental MNU treatment. In addition, most (approximately 90%) of the G:C to A:T transitions induced by MNU were detected in the first nucleotide of some 5′‐G‐(C or G)‐3’ sequences, many of which corresponded to the middle guanine residue of 5′‐purine‐G‐(C or G)‐3’ sequences. It is thus suggested that at particular sites, the neighboring bases in both the 5’ side and 3’ side seem to influence either the susceptibility to DNA damage or the ability to repair MNUinduced lesions. Blackwell Publishing Ltd 2000-05 /pmc/articles/PMC5926380/ /pubmed/10835492 http://dx.doi.org/10.1111/j.1349-7006.2000.tb00971.x Text en
spellingShingle Article
Shioyama, Yoshiyuki
Gondo, Yoichi
Nakao, Kazuki
Katsuki, Motoya
Different Mutation Frequencies and Spectra among Organs by N‐Methyl‐N‐nitrosourea in rpsL (strA) Transgenic Mice
title Different Mutation Frequencies and Spectra among Organs by N‐Methyl‐N‐nitrosourea in rpsL (strA) Transgenic Mice
title_full Different Mutation Frequencies and Spectra among Organs by N‐Methyl‐N‐nitrosourea in rpsL (strA) Transgenic Mice
title_fullStr Different Mutation Frequencies and Spectra among Organs by N‐Methyl‐N‐nitrosourea in rpsL (strA) Transgenic Mice
title_full_unstemmed Different Mutation Frequencies and Spectra among Organs by N‐Methyl‐N‐nitrosourea in rpsL (strA) Transgenic Mice
title_short Different Mutation Frequencies and Spectra among Organs by N‐Methyl‐N‐nitrosourea in rpsL (strA) Transgenic Mice
title_sort different mutation frequencies and spectra among organs by n‐methyl‐n‐nitrosourea in rpsl (stra) transgenic mice
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5926380/
https://www.ncbi.nlm.nih.gov/pubmed/10835492
http://dx.doi.org/10.1111/j.1349-7006.2000.tb00971.x
work_keys_str_mv AT shioyamayoshiyuki differentmutationfrequenciesandspectraamongorgansbynmethylnnitrosoureainrpslstratransgenicmice
AT gondoyoichi differentmutationfrequenciesandspectraamongorgansbynmethylnnitrosoureainrpslstratransgenicmice
AT nakaokazuki differentmutationfrequenciesandspectraamongorgansbynmethylnnitrosoureainrpslstratransgenicmice
AT katsukimotoya differentmutationfrequenciesandspectraamongorgansbynmethylnnitrosoureainrpslstratransgenicmice