Cargando…
On-surface synthesis of a nitrogen-embedded buckybowl with inverse Stone–Thrower–Wales topology
Curved π-conjugated polycyclic aromatic hydrocarbons, buckybowls, constitute an important class of materials with wide applications in materials science. Heteroatom doping of buckybowls is a viable route to tune their intrinsic physicochemical properties. However, synthesis of heteroatom-doped bucky...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5928119/ https://www.ncbi.nlm.nih.gov/pubmed/29712921 http://dx.doi.org/10.1038/s41467-018-04144-5 |
Sumario: | Curved π-conjugated polycyclic aromatic hydrocarbons, buckybowls, constitute an important class of materials with wide applications in materials science. Heteroatom doping of buckybowls is a viable route to tune their intrinsic physicochemical properties. However, synthesis of heteroatom-doped buckybowls is a challenging task. We report on a combined in-solution and on-surface synthetic strategy toward the fabrication of a buckybowl containing two fused nitrogen-doped pentagonal rings. We employ ultra-high-resolution scanning tunneling microscopy and spectroscopy, in combination with density functional theory calculations to characterize the final compound. The buckybowl contains a unique combination of non-hexagonal rings at its core, identified as the inverse Stone–Thrower–Wales topology, resulting in a distinctive bowl-opening-down conformation of the buckybowl on the surface. Our controlled design of non-alternant, heteroatom-doped polycyclic aromatic frameworks with established bottom-up fabrication techniques opens new opportunities in the synthesis of carbon nanostructures with the perspective of engineering properties of graphene-based devices. |
---|